www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysislin. Unabh. & Fundamentalsatz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionalanalysis" - lin. Unabh. & Fundamentalsatz
lin. Unabh. & Fundamentalsatz < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lin. Unabh. & Fundamentalsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:46 Sa 12.05.2007
Autor: laryllan

Aufgabe
Es sei [tex] n \in \IN [/tex], und [tex] \Delta \subset \IR [/tex] enthalte mindestens [tex] n+1 [/tex] Elemente. Betrachte die folgenden [tex] n+1 [/tex] Funktionen [tex] f_{k} : \Delta \rightarrow \IR [/tex] : Es ist [tex]f_{k}(x):=x^{k} [/tex] für [tex] x \in \Delta [/tex] und [tex] k = 0,...,n [/tex].
Zeigen sie: Die Funktionen [tex] f_{0},...,f_{n} [/tex] sind linear unabhängig im Vektorraum aller Funktionen von [tex] \Delta [/tex] nach [tex] \IR [/tex].

Aloha hé,

an der Aufgabe zerbreche ich mir nun schon eine Weile den Kopf. In Anbetracht dessen, dass wir eine ähnliche Aufgabe schon mal hatten, habe ich versucht sie analog zu lösen: Mit einer Vandermondematrix.

Angefangen habe ich mit:

Seien [tex] a_{0},...,a_{n} [/tex] reelle Zahlen und gilt [tex] a_{0}f_{0}(x)+...+a_{n}f_{n}(x)=0[/tex] so soll [tex] a_{0}=....=a_{n} [/tex] gelten.

Soweit so fein. Nun stellt sich mir natürlich dich Frage, inwieweit sich die Einschränkung von [tex] \IR [/tex] auf [tex] \Delta [/tex] im Definitionsbereich auf die Möglichkeit der Beweisführung auswirkt.

Im Tutorium bekamen wir den Hinweis den []Fundamentalsatz der Algebra zu verwenden. Nachdem ich in meinem Ana-Buch nachgeschaut habe, kommen wir ernsthafte Zweifel: Gilt der Fundamentalsatz nicht nur in [tex] \IC [/tex] ?

Aber selbst wenn ich ihn benutzen dürfte, weiß ich nicht wirklich, was mir diese Erkenntnis liefert... Durch den Fundamentalsatz weiß ich, dass ein Polynom, wie das oben angegebene gerade n Nullstellen hat und sich entsprechend in Linearfaktoren zerlegen lässt. Aber wenn ich das mache, dann erhalte ich ja gerade [tex] a_{i} [/tex] die trotzdem zu [tex] a_{0}f_{0}(x)+...+a_{n}f_{n}(x)=0[/tex] führen...

Vielleicht sieht ja jemand meinen Überlegungsfehler oder kann mich auf einen Ansatz führen. Da wäre ich riesig froh.

Namárie,
sagt ein Lary, wo weitergrübeln geht.

        
Bezug
lin. Unabh. & Fundamentalsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 Sa 12.05.2007
Autor: HJKweseleit

Du machst alles ganz richtig:


> Seien [tex]a_{0},...,a_{n}[/tex] reelle Zahlen und gilt
> [tex]a_{0}f_{0}(x)+...+a_{n}f_{n}(x)=0[/tex] so soll [tex]a_{0}=....=a_{n}=0[/tex]
> gelten.

Du musst also nur beweisen, dass du die Nullfunktion hast.
Die Funktion, die du aufgeschrieben hast, hat maximal den Grad n (falls [mm] a_{n}\ne [/mm] 0) und damit maximal n Nullstellen (Fundamentalsatz). Sie soll aber für alle n+1 verschiedenen Elemente aus
[mm] \Delta [/mm] Null werden. Dann kann es nur die Nullfunktion selber sein, also sind alle [mm] a_i [/mm] = 0 und damit die [mm] f_i [/mm] linear unabhängig.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]