www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysislinear Operatoren Bew. unbesch
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionalanalysis" - linear Operatoren Bew. unbesch
linear Operatoren Bew. unbesch < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

linear Operatoren Bew. unbesch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Do 22.05.2008
Autor: obda1701

Aufgabe
Sei [mm] (X,\|*\|) [/mm] normierter Raum und seien S,T: X [mm] \to [/mm] X lineare Operatoren, so dass gilt:
ST - TS = [mm] Id_{X} [/mm]

Zeige, dass S oder T unbeschränkt sein muss

Habe die Aufgabe in einer Sammlung gefunden und dazu mal eine Bitte zu einem Ansatz.

Ich denke, dass geht über einen Wiederspruch (also Annahme, dass S und T beide beschränkt sind.)

Aber mir fehlt ein konkreter Weg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
linear Operatoren Bew. unbesch: Antwort
Status: (Antwort) fertig Status 
Datum: 00:08 Fr 23.05.2008
Autor: MatthiasKr

Hi,
> Sei [mm](X,\|*\|)[/mm] normierter Raum und seien S,T: X [mm]\to[/mm] X
> lineare Operatoren, so dass gilt:
>  ST - TS = [mm]Id_{X}[/mm]
>  
> Zeige, dass S oder T unbeschränkt sein muss
>  Habe die Aufgabe in einer Sammlung gefunden und dazu mal
> eine Bitte zu einem Ansatz.
>  
> Ich denke, dass geht über einen Wiederspruch (also Annahme,
> dass S und T beide beschränkt sind.)

diese aussage nennt sich in der FA heisenbergsche unschaerferelation. Beweise findest du so ziemlich in jedem lehrbuch oder auch []hier.

gruss
matthias


>  
> Aber mir fehlt ein konkreter Weg
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]