www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebralinear abhängige Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - linear abhängige Funktionen
linear abhängige Funktionen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

linear abhängige Funktionen: Tipp und Erklärung
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:58 Di 15.11.2005
Autor: AgentLie

Schönen Abend zusammen,
ich hab mal wieder eine Frage. Mit einer Aufgabe auf meinem Lösungszettel komme ich garnicht zurecht.

Gegeben seien n+1 (n [mm] \in [/mm] N) linear abhängige differenzierbare Funktionen f0, f1, ..., fn [mm] \in [/mm] Abb (R,R). Zeigen Sie: Für alle x [mm] \in [/mm] R ist das (n+1)-Tupel
(f0(x), f'(0(x) ,..., [mm] f^{(n)}0(x)), [/mm] ..., (fn(x), f'n(x), ..., [mm] fn^{(n)}(x)) [/mm]
von Vektoren des [mm] R^{n+1} [/mm] linear abhängig.

Einen richtigen Ansatz habe ich schonmal garnicht, weil ich nichts mit der Information anzufangen weiß, dass die Funktionen differenzierbar sind. Wir hatte in der Uni noch nichts mit Ableitungen und ich weiß in dem Zusammengang auch nichts damit anzufangen. Es wär also nett, wenn mir jemand erklären könnte wie ich damit "umgehen" muss.

Ansonsten fällt mir selber zu der Aufgabe nicht mehr ein, als dass man das (n+1)-Tupel als Linearkombination(en) schreiben könnte. Also
[mm] \alpha [/mm] (1) * (f0(x), f'(0(x) ,..., [mm] f^{(n)}0(x)) [/mm] + ... + [mm] \alpha [/mm] (n+1) * (fn(x), f'n(x), ..., [mm] fn^{(n)}(x)) [/mm] = 0. Die Linearkombination kann man dann wie immer in die einzelnen Zeilen aufspalten. Wie ich mit der Information aber die Aufgabe lösen soll ist mir ein Rätsel.
Bis dann, Michael



        
Bezug
linear abhängige Funktionen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:19 Fr 18.11.2005
Autor: Loddar

Hallo Michael!


Leider konnte Dir keiner hier mit Deinem Problem in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]