www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebralinearabhängige Vektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - linearabhängige Vektoren
linearabhängige Vektoren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

linearabhängige Vektoren: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:05 Sa 12.11.2005
Autor: Sinus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

wieder ich :(

Bei dieser Aufgabe habe ich allerdings überhaupt keinen Schimmer, wie ich ansetzen könnte:

a) Gegeben seien n+1 (n [mm] \in \IN) [/mm] linear abhängige differenzierbare Funktionen [mm] f_{0}, f_{1},..., f_{n} \in [/mm] Abb ( [mm] \IR, \IR). [/mm]

Zeige: Für alle x [mm] \in \IR [/mm] ist das (n+1)-Tupel

[mm] (f_{0}(x), f'_{0}(x),...,f_{0}^n(x)),...,(f_{n}(x),f'_{n}(x),...,f_{n}^n(x)) [/mm]

von Vektoren des [mm] \IR^{n+1} [/mm] linear abhängig.

b) Wir definieren [mm] f_{0}, f_{1},...,f_{n} [/mm] aus Abb [mm] (\IR, \IR) [/mm] durch [mm] f_{0}(x): [/mm] = 1und [mm] f_{i} [/mm] (x): = [mm] x^i [/mm] für i [mm] \in [/mm] {1,...,n}. Zeige, dass [mm] (f_{0},f_{1},...f_{n}) [/mm] linear unabhängig ist.

Danke im Voraus,

Sinus

        
Bezug
linearabhängige Vektoren: zu b)
Status: (Antwort) fertig Status 
Datum: 08:54 So 13.11.2005
Autor: Britta82

Guten Morgen


> b) Wir definieren [mm]f_{0}, f_{1},...,f_{n}[/mm] aus Abb [mm](\IR, \IR)[/mm]
> durch [mm]f_{0}(x):[/mm] = 1und [mm]f_{i}[/mm] (x): = [mm]x^i[/mm] für i [mm]\in[/mm]
> {1,...,n}. Zeige, dass [mm](f_{0},f_{1},...f_{n})[/mm] linear
> unabhängig ist.

Also, du siehst ja selbst, daß das alles Polynome sind, nämlich, 1, x, [mm] x^{2}, ....,x^{n}, [/mm] Die sind ja so schon mal offensichtlich unabhängig, schon durch die Definition des Polynomrings, aber du kannst auch einfach die Linearkombination aufstellen und gleich null setzten:

[mm] \lambda_{0}+\lambda_{1}x+\lambda_{2}x^{2}+...+\lambda_{n}x^{n}=0 [/mm]
offensichtlich muß [mm] \lambda_{0}=0 [/mm] sein, also bleiben n Vektoren [mm] \lambda_{1}x+\lambda_{2}x^{2}+...+\lambda_{n}x^{n}=0, [/mm] wenn du jetzt mal durch n teilst, bekommst du [mm] \lambda_{1}+...=0, [/mm] also muß [mm] \lambda_{1}=0 [/mm] sein und wieder durch x usw.

LG

Britta

Bezug
        
Bezug
linearabhängige Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 09:17 So 13.11.2005
Autor: Stefan

Hallo Sinus!

Es gibt also nach Voraussetzung reelle Zahlen [mm] $\lambda_0,\lambda_1,\ldots,\lambda_n$, [/mm] die nicht alle gleich $0$ sind, mit

[mm] $\lambda_0 f_0(x) [/mm] + [mm] \lambda_1 f_1(x) [/mm] + [mm] \ldots [/mm] + [mm] \lambda_n f_n(x) [/mm] = 0$.

Leite diese Gleichung nun $n$-mal ab und fasse die daraus entstehenden insgesamt $n+1$ Gleichungen als Vektorgleichung im [mm] $\IR^{n+1}$ [/mm] auf.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]