www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und Matrizenlineare Abbildung f:R² -> R²
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Abbildungen und Matrizen" - lineare Abbildung f:R² -> R²
lineare Abbildung f:R² -> R² < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Abbildung f:R² -> R²: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:42 So 27.11.2011
Autor: canogretic

Aufgabe
Entscheiden Sie jeweils, ob es eine lineare Abbildung f : R² -> R² bzw.
g : R² -> R² mit

f(1;1) = (1;0), f(-1;1) = (-3;2) und f(0;1) = (-1;1)

bzw.

g(0;1) = (1;0), g(-1;2) = (2;1) und g(2;1) = 0;-2)

gibt. Für den Fall, dass es eine solche linearen Abbildung gibt, bestimmen Sie auch die der
linearen Abbildung zugeordnete Matrix.

Irgendwie habe ich das Thema der lineare Abbildung noch nicht verstanden. Vielleicht gibt es hier ja jemanden der mir das ein wenig verständlicher machen kann, sodass ich die angegebene Aufgabe berechnen kann. Ich wäre für jeden kleinen Hinweis dankbar.

Wie kann man denn genau entscheiden ob es eine lineare Abbildung gibt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
lineare Abbildung f:R² -> R²: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 So 27.11.2011
Autor: barsch

Hallo,

hier musst du dir zwei Sachen klar machen:

1. Welche Eigenschaften haben lineare Abbildungen?
2. Wie sieht allg. eine lineare Funktion [mm]f:\IR^2\to\IR^2[/mm] aus?


Zu 2.

[mm]f(x,y)=(a_1*x+b_1*y,a_2*x+b_2*y)=\pmat{ a_1 & b_1 \\ a_2 & b_2 }*\vektor{x \\ y} [/mm]

Exisitiert jetzt eine lineare Abbildung f bzw. g mit den genannten Eigenschaften?

Im zweiten Fall

> g : R² -> R² mit
>  
> g(0;1) = (1;0), g(-1;2) = (2;1) und g(2;1) = 0;-2)

kannst du eine lineare Abbildung mit Blick auf die Eigenschaften einer linearen Abbildung ausschließen. Angenommen, es gebe eine lineare Abbildung mit

> g(0;1) = (1;0), g(-1;2) = (2;1) und g(2;1) = (0;-2),

dann gilt mit den Eigenschaften einer linearen Abbildung


[mm]g(2;1)=g(\red{5}*0+\red{(-2)*}(-1);\red{5}*1+\red{(-2)}*2)[/mm]

[mm]=g(\red{5*}0;\red{5*}1)+g(\red{(-2)*}(-1);\red{(-2)*}2)=5*g(0;1)+(-2)*g(-1,2)[/mm]

[mm]=\red{5}*(1;0)+\red{(-2)}*(2;1)=(1,-2)[/mm]

Deutlicher wird es in der Schreibweise:

[mm]g\vektor{2 \\ 1}=g\vektor{5*0+(-2)*(-1)\\ 5*1+(-2)*2}=g\vektor{5*0\\ 5*1}+g\vektor{(-2)*(-1)\\ (-2)*2}=5*g\vektor{0\\ 1}-2*g\vektor{(-1)\\ 2}=5*\vektor{1\\ 0}-2*\vektor{2 \\ 1}=\vektor{1 \\ -2}[/mm]

Laut Voraussetzung soll aber gelten g(2,1)=(0;-2).

Somit gibt es keine lineare Abbildung [mm]g:\IR^2\to\IR^2[/mm] mit

> g(0;1) = (1;0), g(-1;2) = (2;1) und g(2;1) = (0;-2).

Zu f solltest du eine finden...

Gruß
barsch


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]