www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Abbildungenlineare Algebra
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - lineare Algebra
lineare Algebra < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Algebra: lineare Abbildungen
Status: (Frage) beantwortet Status 
Datum: 13:19 So 10.01.2010
Autor: tomen

Aufgabe
Hallo ich bin neu hier. Folgendes Problem.

Welche der folgenden Abbildungen alpha : R3 −→ R2 sind lineare Abbildungen ?
a  ) alpha ( x , y , z ) = ( x + y + 1 , y − z ) f u ̈ r a l l e ( x , y , z ) ∈ R 3 ,
b) alpha ( x , y , z ) = ( x 2 + y 2 + z 2 , x + z ) f u ̈ r a l l e ( x , y , z ) ∈ R 3 ,
c ) alpha ( x , y , z ) = ( x + 2 y + 3 z , x + y + z ) f u ̈ r a l l e ( x , y , z ) ∈ R 3 .

Kann mir jemand helfen?
Am besten vorrechnen und erklären.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo ich bin neu hier. Folgendes Problem.

Welche der folgenden Abbildungen alpha : R3 −→ R2 sind lineare Abbildungen ?
a  ) alpha ( x , y , z ) = ( x + y + 1 , y − z ) f u ̈ r a l l e ( x , y , z ) ∈ R 3 ,
b) alpha ( x , y , z ) = ( x 2 + y 2 + z 2 , x + z ) f u ̈ r a l l e ( x , y , z ) ∈ R 3 ,
c ) alpha ( x , y , z ) = ( x + 2 y + 3 z , x + y + z ) f u ̈ r a l l e ( x , y , z ) ∈ R 3 .

Kann mir jemand helfen?
Am besten vorrechnen und erklären.

        
Bezug
lineare Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:29 So 10.01.2010
Autor: kuemmelsche

Hallo und [willkommenmr]

In den Forenregeln ist enthalten, dass du hier eigene Ansätze vorstellen sollst, auf denen wir aufbauen können.

Du findest hier bestimmt Hilfe, aber nicht ohne selber dir Gedanken gemacht zu haben!

Was ist denn eine lineare Abbildung? Welche Eigenschaften müssen erfüllt sein? Wie kann man so etwas prüfen?

lg Kai

Ps.: Der Formeleditor ist eig. sehr leicht zu verwenden. Damit erleichterst du allen hier das arbeiten.

Bezug
        
Bezug
lineare Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 13:55 So 10.01.2010
Autor: nooschi

also ich helfe bei a, der Rest müsste dann alleine machbar sein ;)

wenn folgende Sachen erfüllt sind, handelte es sich um eine lineare Abbildung:
i) [mm] \alpha(x+y)=\alpha(x)+\alpha(y) \forall [/mm] x,y [mm] \in \IR^{3} [/mm]
ii) [mm] \alpha(a*x)=a*\alpha(x) \forall [/mm] x [mm] \in \IR^{3}, \forall [/mm] a [mm] \in \IR [/mm]

oke jetzt also zur a)
[mm] \alpha(\vektor{ x_{1} \\ x_{2} \\ x_{3} }+\vektor{ y_{1} \\ y_{2} \\ y_{3} }) [/mm] = [mm] \alpha(\vektor{ x_{1}+y_{1} \\ x_{2}+y_{2} \\ x_{3}+y_{3} }) [/mm] = [mm] \vektor{ x_{1}+y_{1}+x_{2}+y_{2}+1 \\ x_{2}+y_{2}-x_{3}-y_{3} } [/mm] = [mm] \vektor{ x_{1}+x_{2}+1 \\ x_{2}-x_{3} }+\vektor{ y_{1}+y_{2} \\ y_{2}-y_{3} } [/mm] = [mm] \alpha(\vektor{ x_{1} \\ x_{2} \\ x_{3} })+\vektor{ y_{1}+y_{2} \\ y_{2}-y_{3} } [/mm]

wie du jetzt schon siehst ist i nicht erfüllt, das heisst ii musst du gar nicht mehr überprüfen

Bezug
                
Bezug
lineare Algebra: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:21 So 10.01.2010
Autor: tomen

bitte genauer.  

Bezug
                        
Bezug
lineare Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:29 So 10.01.2010
Autor: angela.h.b.


> bitte genauer.  

Hallo,

ich bitte Dich erneut, die Forenregeln zu beachten.

Falls es so ist, daß Du eher eine Lösungsmaschine suchst, bist Du hier im Forum falsch und solltest Dich eher woanders umschauen.

Gruß v. Angela


Bezug
                        
Bezug
lineare Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:15 So 10.01.2010
Autor: nooschi

wenn du mir schreibst, welcher Punkt genau dir noch nicht klar ist, kann ichs dir schon noch genauer aufschreiben, aber einfach so weiss ich nicht was noch dein Problem ist, Hellsehen ist nicht meine Stärke.

Bezug
        
Bezug
lineare Algebra: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:09 So 10.01.2010
Autor: tomen

Aufgabe
kann mir jemand helfen?

Welche der folgenden Abbildungen alpha : R3 −→ R2 sind lineare Abbildungen ?
a  ) alpha ( x , y , z ) = ( x + y + 1 , y − z ) f u ̈ r a l l e ( x , y , z ) ∈ R 3 ,
b) alpha ( x , y , z ) = ( x 2 + y 2 + z 2 , x + z ) f u ̈ r a l l e ( x , y , z ) ∈ R 3 ,
c ) alpha ( x , y , z ) = ( x + 2 y + 3 z , x + y + z ) f u ̈ r a l l e ( x , y , z ) ∈ R 3 .

Am besten vorrechnen und erklären.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Bezug
                
Bezug
lineare Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:26 So 10.01.2010
Autor: angela.h.b.


> kann mir jemand helfen?
>  
> Welche der folgenden Abbildungen alpha : R3 −→ R2 sind
> lineare Abbildungen ?
> a  ) alpha ( x , y , z ) = ( x + y + 1 , y − z ) f u ̈ r
> a l l e ( x , y , z ) ∈ R 3 ,
>  b) alpha ( x , y , z ) = ( x 2 + y 2 + z 2 , x + z ) f u
> ̈ r a l l e ( x , y , z ) ∈ R 3 ,
> c ) alpha ( x , y , z ) = ( x + 2 y + 3 z , x + y + z ) f u
> ̈ r a l l e ( x , y , z ) ∈ R 3 .
>  
> Am besten vorrechnen und erklären.

Hallo,

[willkommenmr].

Bitte lies und beachte unsere Forenregeln, auf welche Du ja auch schon hingewiesen wurdest.

Eröffne  auch nicht für dieselben Aufgaben mehrere Diskussionen.

Du hattest ja schon Tips bekommen.

Jetzt bist Du dran:

woran erkennt man, ob eine Abbildung linear ist, was mußt Du prüfen?


Wie hast Du das versucht, was hast Du bisher erreicht, wo ist ggf. Dein Problem?

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]