www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle Differentialgleichungenlineare Dgl 1ter Ordnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Partielle Differentialgleichungen" - lineare Dgl 1ter Ordnung
lineare Dgl 1ter Ordnung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Dgl 1ter Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:53 Sa 11.09.2010
Autor: giga1111

Aufgabe
[mm] xy'+2y=x^{1/3} [/mm]


Hallo,

wäre super wenn Ihr mir helfen könntet.
bestimmen von y bei dem Punkt (1/1)

[mm] xy'+2y=x^{1/3} [/mm]

hommogene DG:

x*{dx/dy}+2y=0
-dy/dx=-2y/x
y=C/2x

stimmt die hommogene Lösung?

Gruß
Giga


ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
lineare Dgl 1ter Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 Sa 11.09.2010
Autor: MathePower

Hallo Giga1111,


> [mm]xy'+2y=x^{1/3}[/mm]
>  Hallo,
>  
> wäre super wenn Ihr mir helfen könntet.
>  bestimmen von y bei dem Punkt (1/1)
>  
> [mm]xy'+2y=x^{1/3}[/mm]
>  
> hommogene DG:
>  
> x*{dx/dy}+2y=0
> -dy/dx=-2y/x
>  y=C/2x
>  
> stimmt die hommogene Lösung?


Leider nein. [notok]


>  
> Gruß
> Giga
>  
>
> ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
lineare Dgl 1ter Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:36 So 12.09.2010
Autor: giga1111

Hallo Giga1111,


> $ [mm] xy'+2y=x^{1/3} [/mm] $
>  Hallo,
>  
> wäre super wenn Ihr mir helfen könntet.
>  bestimmen von y bei dem Punkt (1/1)
>  
> $ [mm] xy'+2y=x^{1/3} [/mm] $
>  
> hommogene DG:
>  
> x*{dx/dy}+2y=0
> -dy/dx=-2y/x
>  y=C/2x
>  
> stimmt die hommogene Lösung?


Leider nein. [notok]


>  
> Gruß
> Giga
>  

>

> ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

okay, danke

hab nochmal nachgerechnet,
sollte eigentlich

[mm] y(h)=C/x^2 [/mm]

heißen. Glaube ich...??
mache für heute Schluss.
Vielen dank für Eure Hilfe,
mache dann morgen wieder weiter.

Gruß
Giga

Bezug
                        
Bezug
lineare Dgl 1ter Ordnung: besser
Status: (Antwort) fertig Status 
Datum: 03:32 So 12.09.2010
Autor: Loddar

Hallo giga!


>  sollte eigentlich
>  
> [mm]y(h)=C/x^2[/mm]
>  
> heißen.

[ok] Das sieht besser aus ...


Gruß
Loddar



Bezug
                                
Bezug
lineare Dgl 1ter Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 So 12.09.2010
Autor: giga1111

So jetzt bin ich wieder da.

ich hab also die inhommogene Gleichung
$ [mm] xy'+2y=x^{1/3}$ [/mm]
mit der hommogenen Lösung
[mm] y(h)=\bruch{C}{x^2} [/mm]  

jetzt bestimme ich die partikuläre Lösung

[mm] y(p)=C(x)*x^{-2} [/mm]
[mm] y'(p)=C'(x)*x^{-2}+C(x)*-2x^{-3} [/mm]

einsetzen in inhommogeneDG:
[mm] C'(x)*x^{-2}+C(x)*-2x^{-3}+\bruch{3}{4}*\left( C(x)*x^{-2} \right) =x^{1/3} [/mm]

[mm] C'(x)*x^{-2}=x^{1/3} [/mm]
[mm] C'(x)=x^{7/3} [/mm]
[mm] C(x)=\bruch{3x^{10/3}}{10} [/mm]

[mm] y(p)=\bruch{3x^{10/3}}{10}*x^{-2} [/mm]

Jetzt müsste ich die allgemeine Lösung bestimmen können mit

y=y(p)+y(h)

[mm] y=\bruch{3x^{10/3}}{10}*x^{-2}+C(x)*x^{-2} [/mm]

[mm] y=x^{-2}*\left( \bruch{3x^{10/3}}{10}+C(x)\right) [/mm]

stimmt das soweit, oder hab ich schon wieder einen Fehler eingebaut?
Vielen Dank jetzt schon für Eure Hilfe.

Bezug
                                        
Bezug
lineare Dgl 1ter Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 So 12.09.2010
Autor: schachuzipus

Hallo giga111,


> So jetzt bin ich wieder da.
>  
> ich hab also die inhommogene Gleichung
>  [mm]xy'+2y=x^{1/3}[/mm]
>  mit der hommogenen Lösung
>   [mm]y(h)=\bruch{C}{x^2}[/mm]  [ok]
>
> jetzt bestimme ich die partikuläre Lösung
>  
> [mm]y(p)=C(x)*x^{-2}[/mm]
>   [mm]y'(p)=C'(x)*x^{-2}+C(x)*-2x^{-3}[/mm] [ok]
>  
> einsetzen in inhommogeneDG:

Das heißt (in)homogen mit einem "m"

Du vergleichst mit der Ausgangsdgl:

Die lautet [mm]xy'+2y=x^{\frac{1}{3}}[/mm] bzw. für [mm]x\neq 0[/mm]

[mm]y'=-\frac{2y}{x}+x^{-\frac{2}{3}}[/mm]

Dort setzt du nun die obige Lösung ein für y:

[mm]y'=-\frac{2\frac{c(x)}{x^2}}{x}+x^{-\frac{2}{3}}[/mm]

Und das ist nach deiner obigen Rechnung [mm]\ldots=c'(x)x^{-2}-2c(x)x^{-3}[/mm]

Also [mm]\red{-2\frac{c(x)}{x^3}}+x^{-\frac{2}{3}}=c'(x)x^{-2}\red{-2c(x)x^{-3}}[/mm]

Damit [mm]c'(x)x^{-2}=x^{-\frac{2}{3}}[/mm], also [mm]c'(x)=x^{\frac{4}{3}}[/mm]

Nun nochmal zuende rechnen ...

>  [mm]C'(x)*x^{-2}+C(x)*-2x^{-3}+\bruch{3}{4}*\left( C(x)*x^{-2} \right) =x^{1/3}[/mm]
>  
> [mm]C'(x)*x^{-2}=x^{1/3}[/mm]
>  [mm]C'(x)=x^{7/3}[/mm] [notok]
>  [mm]C(x)=\bruch{3x^{10/3}}{10}[/mm]
>  
> [mm]y(p)=\bruch{3x^{10/3}}{10}*x^{-2}[/mm]

Nein, das ist leider immer noch nicht richtig!

>  
> Jetzt müsste ich die allgemeine Lösung bestimmen können
> mit
>  
> y=y(p)+y(h)
>  
> [mm]y=\bruch{3x^{10/3}}{10}*x^{-2}+C(x)*x^{-2}[/mm]
>  
> [mm]y=x^{-2}*\left( \bruch{3x^{10/3}}{10}+C(x)\right)[/mm]
>  
> stimmt das soweit, oder hab ich schon wieder einen Fehler
> eingebaut?

Ja, leider!

>  Vielen Dank jetzt schon für Eure Hilfe.

Gruß

schachuzipus


Bezug
                                                
Bezug
lineare Dgl 1ter Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 So 12.09.2010
Autor: giga1111

Hallo giga111,


> So jetzt bin ich wieder da.
>  
> ich hab also die inhommogene Gleichung
>  $ [mm] xy'+2y=x^{1/3} [/mm] $
>  mit der hommogenen Lösung
>   $ [mm] y(h)=\bruch{C}{x^2} [/mm] $  [ok]

>

> jetzt bestimme ich die partikuläre Lösung
>  
> $ [mm] y(p)=C(x)\cdot{}x^{-2} [/mm] $
>   $ [mm] y'(p)=C'(x)\cdot{}x^{-2}+C(x)\cdot{}-2x^{-3} [/mm] $ [ok]
>  
> einsetzen in inhommogeneDG:

Das heißt (in)homogen mit einem "m"

Du vergleichst mit der Ausgangsdgl:

Die lautet $ [mm] xy'+2y=x^{\frac{1}{3}} [/mm] $ bzw. für $ [mm] x\neq [/mm] 0 $

$ [mm] y'=-\frac{2y}{x}+x^{-\frac{2}{3}} [/mm] $

Dort setzt du nun die obige Lösung ein für y:

$ [mm] y'=-\frac{2\frac{c(x)}{x^2}}{x}+x^{-\frac{2}{3}} [/mm] $

Und das ist nach deiner obigen Rechnung $ [mm] \ldots=c'(x)x^{-2}-2c(x)x^{-3} [/mm] $

Also $ [mm] \red{-2\frac{c(x)}{x^3}}+x^{-\frac{2}{3}}=c'(x)x^{-2}\red{-2c(x)x^{-3}} [/mm] $

Damit $ [mm] c'(x)x^{-2}=x^{-\frac{2}{3}} [/mm] $, also $ [mm] c'(x)=x^{\frac{4}{3}} [/mm] $

Nun nochmal zuende rechnen ...

>  $ [mm] C'(x)\cdot{}x^{-2}+C(x)\cdot{}-2x^{-3}+\bruch{3}{4}\cdot{}\left( C(x)\cdot{}x^{-2} \right) =x^{1/3} [/mm] $
>  
> $ [mm] C'(x)\cdot{}x^{-2}=x^{1/3} [/mm] $
>  $ [mm] C'(x)=x^{7/3} [/mm] $ [notok]
>  $ [mm] C(x)=\bruch{3x^{10/3}}{10} [/mm] $
>  
> $ [mm] y(p)=\bruch{3x^{10/3}}{10}\cdot{}x^{-2} [/mm] $

Nein, das ist leider immer noch nicht richtig!

>  
> Jetzt müsste ich die allgemeine Lösung bestimmen können
> mit
>  
> y=y(p)+y(h)
>  
> $ [mm] y=\bruch{3x^{10/3}}{10}\cdot{}x^{-2}+C(x)\cdot{}x^{-2} [/mm] $
>  
> $ [mm] y=x^{-2}\cdot{}\left( \bruch{3x^{10/3}}{10}+C(x)\right) [/mm] $
>  
> stimmt das soweit, oder hab ich schon wieder einen Fehler
> eingebaut?

Ja, leider!

>  Vielen Dank jetzt schon für Eure Hilfe.

Gruß

schachuzipus


Hab meinen Fehler jetzt gefunden....


>  $ [mm] C'(x)\cdot{}x^{-2}+C(x)\cdot{}-2x^{-3}+\bruch{3}{4}\cdot{}\left( C(x)\cdot{}x^{-2} \right) =x^{1/3} [/mm] $


habe auch in die Anfangsgleichung eingesetzt, habe aber [mm] x^{1/3} [/mm] vergessen mit x zu dividieren (kopfschüttel)
Die Gleichung hätte lauten müssen

>  $ [mm] C'(x)\cdot{}x^{-2}+C(x)\cdot{}-2x^{-3}+\bruch{3}{4}\cdot{}\left( C(x)\cdot{}x^{-2} \right) =x^{-2/3} [/mm] $
>  

dann ist

> $ [mm] C'(x)\cdot{}x^{-2}=x^{-2/3} [/mm] $
>  $ [mm] C'(x)=x^{4/3} [/mm] $ [ok]
>  $ [mm] C(x)=\bruch{3x^{7/3}}{7} [/mm] $

daraus folgt

[mm] y(p)=\bruch{3x^{7/3}}{7}*x^2 [/mm]

und die allgemeine Lösung müsste lauten

y=y(p)+y(h)

[mm] y=\bruch{3x^{7/3}}{7}*x^2+\bruch{C}{x^2} [/mm]

stimmt das jetzt?
sorry für das "m", steht in meinem Buch falsch drinnen.
Werde in Zukunft eine homogenere Schreibweise verwenden:-)

Rechne erst mal auf Papier weiter, da bin ich schneller.
Muss ja noch P(1/1) einsetzen für die Spezielle.
Du bist die oder der Beste
schachuzipus.

Gruß
giga




Bezug
                                                        
Bezug
lineare Dgl 1ter Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 So 12.09.2010
Autor: MathePower

Hallo giga1111,

>  
>
> Hab meinen Fehler jetzt gefunden....
>  
>
> >  

> [mm]C'(x)\cdot{}x^{-2}+C(x)\cdot{}-2x^{-3}+\bruch{3}{4}\cdot{}\left( C(x)\cdot{}x^{-2} \right) =x^{1/3}[/mm]
>  
>
> habe auch in die Anfangsgleichung eingesetzt, habe aber
> [mm]x^{1/3}[/mm] vergessen mit x zu dividieren (kopfschüttel)
>  Die Gleichung hätte lauten müssen
>  
> >  

> [mm]C'(x)\cdot{}x^{-2}+C(x)\cdot{}-2x^{-3}+\bruch{3}{4}\cdot{}\left( C(x)\cdot{}x^{-2} \right) =x^{-2/3}[/mm]
>  
> >  

> dann ist
>  
> > [mm]C'(x)\cdot{}x^{-2}=x^{-2/3}[/mm]
>  >  [mm]C'(x)=x^{4/3}[/mm] [ok]
>  >  [mm]C(x)=\bruch{3x^{7/3}}{7}[/mm]
>  


[ok]


> daraus folgt
>  
> [mm]y(p)=\bruch{3x^{7/3}}{7}*x^2[/mm]
>  
> und die allgemeine Lösung müsste lauten
>  
> y=y(p)+y(h)
>  
> [mm]y=\bruch{3x^{7/3}}{7}*x^2+\bruch{C}{x^2}[/mm]


Das soll wohl eher so lauten:

[mm]y=\bruch{3x^{7/3}}{{7}*x^{2}}+\bruch{C}{x^{2}}[/mm]


>  
> stimmt das jetzt?
>  sorry für das "m", steht in meinem Buch falsch drinnen.
>  Werde in Zukunft eine homogenere Schreibweise
> verwenden:-)
>  
> Rechne erst mal auf Papier weiter, da bin ich schneller.
>  Muss ja noch P(1/1) einsetzen für die Spezielle.
>  Du bist die oder der Beste
> schachuzipus.
>  
> Gruß
>  giga
>
>


Gruss
MathePower  

Bezug
                                                                
Bezug
lineare Dgl 1ter Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 So 12.09.2010
Autor: giga1111

Hallo giga1111,

>  

>

> Hab meinen Fehler jetzt gefunden....
>  

>

> >  

> $ [mm] C'(x)\cdot{}x^{-2}+C(x)\cdot{}-2x^{-3}+\bruch{3}{4}\cdot{}\left( C(x)\cdot{}x^{-2} \right) =x^{1/3} [/mm] $
>  

>

> habe auch in die Anfangsgleichung eingesetzt, habe aber
> $ [mm] x^{1/3} [/mm] $ vergessen mit x zu dividieren (kopfschüttel)
>  Die Gleichung hätte lauten müssen
>  
> >  

> $ [mm] C'(x)\cdot{}x^{-2}+C(x)\cdot{}-2x^{-3}+\bruch{3}{4}\cdot{}\left( C(x)\cdot{}x^{-2} \right) =x^{-2/3} [/mm] $
>  
> >  

> dann ist
>  
> > $ [mm] C'(x)\cdot{}x^{-2}=x^{-2/3} [/mm] $
>  >  $ [mm] C'(x)=x^{4/3} [/mm] $ [ok]
>  >  $ [mm] C(x)=\bruch{3x^{7/3}}{7} [/mm] $
>  


[ok]


> daraus folgt
>  
> $ [mm] y(p)=\bruch{3x^{7/3}}{7}\cdot{}x^2 [/mm] $
>  
> und die allgemeine Lösung müsste lauten
>  
> y=y(p)+y(h)
>  
> $ [mm] y=\bruch{3x^{7/3}}{7}\cdot{}x^2+\bruch{C}{x^2} [/mm] $


Das soll wohl eher so lauten:

$ [mm] y=\bruch{3x^{7/3}}{{7}\cdot{}x^{2}}+\bruch{C}{x^{2}} [/mm] $


ja natürlich, habe mich mal wieder vertippt;-)

habe jetzt für die spezielle DG P(1/1) eingesetzt
und für C= [mm] \bruch{4}{7} [/mm] herausbekommen.

Das Ergebnis wäre dann

y= [mm] \bruch{4}{7}*(3*x^{1/3}+\bruch{4}{x^2}) [/mm]

stimmt das jetzt?

Gruß
giga




Bezug
                                                                        
Bezug
lineare Dgl 1ter Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:12 So 12.09.2010
Autor: giga1111

Habe alles nochmal durchgeschaut,
beim Einsetzen der partikulären Lösung in die Anfangsgleichung habe ich statt dem Faktor
[mm] \bruch{2}{x} [/mm] blöderweise [mm] \bruch{3}{4} [/mm] getippt.
Das eintippen macht mir noch ziemliche Schwierigkeiten.

Gruß
giga

Bezug
                                                                        
Bezug
lineare Dgl 1ter Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 So 12.09.2010
Autor: MathePower

Hallo giga1111,

> Hallo giga1111,
>  
> >  

> >
>  > Hab meinen Fehler jetzt gefunden....

>  >  
> >
>  > >  

>
> >
> [mm]C'(x)\cdot{}x^{-2}+C(x)\cdot{}-2x^{-3}+\bruch{3}{4}\cdot{}\left( C(x)\cdot{}x^{-2} \right) =x^{1/3}[/mm]
>  
> >  

> >
>  > habe auch in die Anfangsgleichung eingesetzt, habe aber

>  > [mm]x^{1/3}[/mm] vergessen mit x zu dividieren (kopfschüttel)

>  >  Die Gleichung hätte lauten müssen
>  >  
> > >  

>
> >
> [mm]C'(x)\cdot{}x^{-2}+C(x)\cdot{}-2x^{-3}+\bruch{3}{4}\cdot{}\left( C(x)\cdot{}x^{-2} \right) =x^{-2/3}[/mm]
>  
> >  

> > >  

>
> > dann ist
>  >  
> > > [mm]C'(x)\cdot{}x^{-2}=x^{-2/3}[/mm]
>  >  >  [mm]C'(x)=x^{4/3}[/mm] [ok]
>  >  >  [mm]C(x)=\bruch{3x^{7/3}}{7}[/mm]
>  >  
>
>
> [ok]
>  
>
> > daraus folgt
>  >  
> > [mm]y(p)=\bruch{3x^{7/3}}{7}\cdot{}x^2[/mm]
>  >  
> > und die allgemeine Lösung müsste lauten
>  >  
> > y=y(p)+y(h)
>  >  
> > [mm]y=\bruch{3x^{7/3}}{7}\cdot{}x^2+\bruch{C}{x^2}[/mm]
>  
>
> Das soll wohl eher so lauten:
>  
> [mm]y=\bruch{3x^{7/3}}{{7}\cdot{}x^{2}}+\bruch{C}{x^{2}}[/mm]
>  
>
> ja natürlich, habe mich mal wieder vertippt;-)
>  
> habe jetzt für die spezielle DG P(1/1) eingesetzt
>  und für C= [mm]\bruch{4}{7}[/mm] herausbekommen.
>  
> Das Ergebnis wäre dann
>
> y= [mm]\bruch{4}{7}*(3*x^{1/3}+\bruch{4}{x^2})[/mm]


Da hast Du Dich bestimmt wieder vertippt:

[mm]y=\bruch{\red{1}}{7}*(3*x^{1/3}+\bruch{4}{x^2})[/mm] [ok]


>  
> stimmt das jetzt?


Mit der angebrachten Korrektur, ja.

  

> Gruß
>  giga


Gruss
MathePower  

Bezug
                                                                                
Bezug
lineare Dgl 1ter Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 So 12.09.2010
Autor: giga1111

Vielen Dank!!!!
Ihr habt mir sehr geholfen:-)
Hab leider noch große Schwierigkeiten mit dem Eingeben.
Gruß
giga

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]