www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Sonstigeslineare Optimierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - lineare Optimierung
lineare Optimierung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Optimierung: lineares Programm
Status: (Frage) überfällig Status 
Datum: 18:25 Mi 31.10.2007
Autor: barsch

Aufgabe
Es seien n Punkte [mm] (x_i,y_i) [/mm] in der Ebene gegeben. Gesucht ist eine Gerade, die das Maximum der vertikalen Abstände zu den Punkten minimiert. Formulieren Sie das dementsprechende lineare Programm.

Hi,

meine erste Frage in Lineare Optimierung :-) und prompt habe ich keinen geeigneten Forenzweig gefunden.

Zur Frage. Ich hoffe, ihr könnt der Frage entnehmen, was gemeint ist.

Ich habe mir folgendes gedacht:


[mm] \min_{a,b\in\IR} \max_{i=1,...,n} |ax_i+b-y_i| [/mm]

Ich habe jetzt aber keine Ahnung, wie ich das als lineares Programm formulieren soll, zumal ich auch keine Nebenbedingungen finde.

Bin dankbar für jeden Hinweis und habe die Frage in keinem anderen Forum gestellt.

MfG barsch


        
Bezug
lineare Optimierung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Fr 02.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
lineare Optimierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:52 Fr 02.11.2007
Autor: dormant

Hi!

Was heißt vertikaler Abstand? Ich versteh das so:

Der vertikale Abstand von (a,b) zu (d,c) ist |a-d|.

Wenn das so wäre, dann interessiert man sich nur für eine Familie [mm] (x_{i})_{i=1,...,n} [/mm] und einen Punkt a, so dass [mm] a=\bruch{\max_{i=1,...,n}(x_{i})-\min_{j=1,...,n}(x_{j})}{2}. [/mm]

Das kann man als LP formulieren, obwohl es ein bisschen unschön wird.

Würde man aber den Euklidischen Abstand benutzen, so kriegt man große Probleme mit der Linearität des Programms, die aus meiner Sich nicht auszutricksen sind.

Gurß,
dormant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]