lineare abbildung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:16 Mo 17.01.2005 | Autor: | sarahly |
hallo ich habe folgende aufgabe bekommen und versuche nun schon seit heute mittag sie zu lösen oder wenigstens einen ansatz zu finden aber leider vergeblich:
Sei F:= {f: [mm] \IR \to \IR| [/mm] Abbildung} der Vektorraum der reellwertigen Funktion auf [mm] \IR. [/mm] Zeige , dass einem gegebenen x [mm] \in \IR [/mm] die Punktauswertung von Funktionen [mm] P_x(f) [/mm] := f(x) eine lineare Abbildung [mm] P_x: [/mm] F [mm] \to \IR [/mm] definiert.
Beschreibe Bild und Nullraum dieser Abbildung
ich hoffe mal mir kann jemand helfen denn ich verzweife hier dran :(
iich weiß garnicht was es mit dem P auf sich hat....
gruss sarah
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:32 Mo 17.01.2005 | Autor: | Micha |
Hallo Sarah!
> hallo ich habe folgende aufgabe bekommen und versuche nun
> schon seit heute mittag sie zu lösen oder wenigstens einen
> ansatz zu finden aber leider vergeblich:
>
> Sei [mm]F:= \{f: \IR \to \IR | \mbox{Abbildung} \} [/mm] der Vektorraum der
> reellwertigen Funktion auf [mm]\IR.[/mm] Zeige , dass einem
> gegebenen x [mm]\in \IR[/mm] die Punktauswertung von Funktionen
> [mm]P_x(f)[/mm] := f(x) eine lineare Abbildung [mm]P_x:[/mm] F [mm]\to \IR[/mm]
> definiert.
> Beschreibe Bild und Nullraum dieser Abbildung
>
> ich hoffe mal mir kann jemand helfen denn ich verzweife
> hier dran :(
> iich weiß garnicht was es mit dem P auf sich hat....
Vielleicht sollten wir mal mit dem P anfangen. Was macht dieses P? Also im Vektorraum F hast du ziemlich viele reellwertige Funktionen. Nun willst du für eine bestimmte Stelle x wissen, wie die Funktionswerte für die jeweils verschiedenen Funktionen aussehen.
Die Denkweise ist damit etwas umgekehrt, als bei der Auswertung des Definitionsbereiches unter einer Funktion f. Da schaust du, wie die Funktionswerte von jedem x aus dem Definitionsbereich, die Werte unter einer festen Abbildung f aussehen.
Also einmal ist die Auswertung an einer Stelle x für verschiedene Funktionen zu unternehmen (das machen wir jetzt mit dem P) und sonst wertet man üblicherweise für alle Stellen x des Definitionsbereiches unter einer feste Funktion f aus...
Mache dir diesen Unterschied erst klar, bevor du weiterliest...
Nun müssen wir zeigen, dass [mm] $P_x$ [/mm] linear ist. Im Einzelnen ist also zu zeigen: Sind $f, [mm] f_1, f_2 \in [/mm] F, [mm] \lambda \in \IR [/mm] $ ; dann gilt:
(i) $ [mm] P_x(f_1 [/mm] + [mm] f_2) [/mm] = [mm] P_x (f_1) [/mm] + [mm] P_x (f_2)$
[/mm]
(ii) $ [mm] P_x (\lambda [/mm] f) = [mm] \lambda P_x [/mm] (f)$
Beweis: zu (i) [mm] $P_x (f_1 [/mm] + [mm] f_2) [/mm] = [mm] (f_1 [/mm] + [mm] f_2) [/mm] (x) = [mm] f_1 [/mm] (x) + [mm] f_2 [/mm] (x) = [mm] P_x (f_1) [/mm] + [mm] P_x (f_2)$
[/mm]
(Mit P mache ich die Auswertung an meinem festen x und forme dann um, im Vektorraum F darf ich die Summe [mm] $f_1 [/mm] + [mm] f_2$ [/mm] auseinanderziehen...)
Beweis zu (ii) solltest du jetzt selbst können. Ich freue mich schon auf dein Ergebnis.
Im zweiten Teil der Aufgabe sollst du dir überlegen, wie Bild und Nullraum von [mm] $P_x$ [/mm] aussehen. Fangen wir mit dem Nullraum an... Für welche Funktionen wird [mm] $P_x [/mm] (f)$ an einer Stelle x gleich 0? Ich würde hier mal die Menge der Funktionen vorschlagen, die an dieser Stelle x eine Nullstelle besitzen.
Was war das Bild nochmal? Das waren alle Werte des Zielbereiches (hier also [mm] $\IR$), [/mm] für die es eine Funktion gibt, die an der Stelle x ausgewertet den entsprechenden Wert des Zielbereiches annimmt... Mit dem ersten Teil kannst du dir überlegen, wieviele Funktionen ich denn so finden kann, und welche $y = [mm] P_x [/mm] (f)$ für verschiedene f angenommen werden können.
Gruß, Micha
|
|
|
|