www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra Sonstigeslineare h
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - lineare h
lineare h < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare h: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:40 Mi 11.03.2009
Autor: lilalaunebaeri

Aufgabe
Berechnen Sie [mm] R^3 [/mm] die lineare Hülle der Familie

M:=( [mm] \pmat{ x \\ y \\ z} \in R^3 [/mm] | x=y oder x=1)

Ich finde gerade nichts über solche Aufgaben, deswegen frage ich mal nach. Was eine Lineare Hülle ist, das ist mir soweit klar. Diese stellt ja alle möglichen Linearkombinationen dar. Praktisch den Raum, den die Basis aufspannt, wenn ich das richtig verstanden habe.

Aber wie soll ich das nun berechnen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
lineare h: Antwort
Status: (Antwort) fertig Status 
Datum: 05:51 Mi 11.03.2009
Autor: angela.h.b.


> Berechnen Sie [mm]R^3[/mm] die lineare Hülle der Familie
>  
> M:=( [mm]\pmat{ x \\ y \\ z} \in R^3[/mm] | x=y oder x=1)
>  Ich finde gerade nichts über solche Aufgaben, deswegen
> frage ich mal nach. Was eine Lineare Hülle ist, das ist mir
> soweit klar. Diese stellt ja alle möglichen
> Linearkombinationen dar. Praktisch den Raum, den die Basis
> aufspannt, wenn ich das richtig verstanden habe.

Hallo,

Du kannst die lineare Hülle einer jeden menge von Vektoren berechnen, das muß gar nicht unbedingt eine Basis sein.

Hier ist folgendes zu tun:

Berechne jeweils die Lösungsmenge der beiden Gleichungen, vereinige sie.

Damit kennst Du ein Erzeugendensystem der gesuchten linearen Hülle.

Von diesem bestimme anschließend eine Basis.

Gruß v. Angela

>  
> Aber wie soll ich das nun berechnen?
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
lineare h: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 Mi 11.03.2009
Autor: lilalaunebaeri

Dann brauch ich wohl eindeutig nochmal Hilfe.

Die Lösungsmengen wären ja [mm] \vektor{y\\ y \\ z} [/mm] und [mm] \vektor{1\\ y \\ z}, [/mm] wenn ich das richtig verstanden habe.

Aber wie vereinige ich die beiden?

Bezug
                        
Bezug
lineare h: Antwort
Status: (Antwort) fertig Status 
Datum: 12:20 Mi 11.03.2009
Autor: angela.h.b.


> Dann brauch ich wohl eindeutig nochmal Hilfe.
>
> Die Lösungsmengen wären ja [mm]\vektor{y\\ y \\ z}[/mm] und
> [mm]\vektor{1\\ y \\ z},[/mm] wenn ich das richtig verstanden habe.
>
> Aber wie vereinige ich die beiden?  

Hallo,

erstmal schreiben wir sie gescheit hin, die spitzen Klammern bedeutet hier "lineare Hülle".

Wir haben zu vereinigen die beiden Mengen

[mm] <\vektor{1\\1\\0}, \vektor{0\\0\\1}> [/mm]    und [mm] \vektor{1\\0\\0}+<\vektor{0\\1\\0}, \vektor{0\\0\\1}> [/mm] .

Von der Vereinigung soll anschließend die linear Hülle gebildet werden.

Wenn Du nun genau hinguckst, dann siehst Du, daß  [mm] <\vektor{1\\1\\0}, \vektor{0\\0\\1}> \cup (\vektor{1\\0\\0}+<\vektor{0\\1\\0}, \vektor{0\\0\\1}>) [/mm]  eine Basis des [mm] \IR^3 [/mm] enthält. Welche z.B.?

Die lineare Hülle ist dann zwangsläufig was?

Gruß v. Angela


Bezug
                                
Bezug
lineare h: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:47 Mi 11.03.2009
Autor: lilalaunebaeri

[mm] \vektor{0\\1\\0}, \vektor{0\\0\\1} [/mm] wären ja beispielsweise Basisvektoren.

Würde man dann noch [mm] \vektor{1\\1\\0} [/mm] dazu nehmen, dann könnte man den ganzen [mm] R^3 [/mm] darstellen, oder?

Bezug
                                        
Bezug
lineare h: Antwort
Status: (Antwort) fertig Status 
Datum: 12:52 Mi 11.03.2009
Autor: fred97

So ist es

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]