www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenlineare inhomogene Rekursion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - lineare inhomogene Rekursion
lineare inhomogene Rekursion < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare inhomogene Rekursion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:38 Fr 18.07.2008
Autor: jboss

Aufgabe
1) Lösen Sie [mm] $a_{n+1} [/mm] = [mm] 2a_{n} [/mm] - 3n + 4$ mit der Anfangsbedingung [mm] $a_0 [/mm] = 1$
2) Lösen Sie $ [mm] a_{n+2} [/mm] = [mm] 4a_{n+1} [/mm]  - [mm] 4a_{n} [/mm] + [mm] 3^n$ [/mm] mit den Anfangsbedingungen [mm] $a_0 [/mm] = 10, [mm] a_1 [/mm] = 39$
Tipp: Machen Sie für die spezielle Lösung den Ansatz [mm] $a_n [/mm] = k * [mm] 3^n$ [/mm]

Hallo zusammen,
ich stecke gerade mitten in einer Klausurvorbereitung und verzweifle an diesen beiden Aufgaben. Ich war der Meinung lineare (in-)homogene Rekursionen gut lösen zu können. Jedoch stimmen meine beiden Lösungen zu obigen Aufgaben mit den Lösungen in meinem Lehrbuch nicht überein (der Rechenweg ist nicht angegeben, nur die Lösung). Daher bitte ich um eure Mithilfe!

Man geht ja beim Lösen inhomogener linearer Rekursionen k-ter Ordnung wie folgt vor:
1) Man bestimmt die Lösung für den homogenen Teil der Rekursion. Man stellt also das charakterische Polynom auf und bestimmt dessen Nullstellen. Anschließend ist die explizite Formel des homogenen Teilproblems [mm] $a_n [/mm] = [mm] k_1 [/mm] * [mm] \alpha_{1}^n [/mm] + ... + [mm] k_r [/mm] * [mm] \alpha_{r}^n$ [/mm] für Grad $r$ und den Fall, dass alle Nullstellen paarweise verschieden sind.

2) Anschließend bestimmt man eine spezielle Lösung des inhomogenen Teils der Rekursion.

3) Das Ergebnis ist die Summe des homogenen Teils und des inhomogenen Teils.

Konkret an Aufgabe 1)
[mm] $a_{n+1} [/mm] = [mm] 2a_{n} [/mm] - 3n + 4$ mit Rekursionsanfang [mm] $a_0 [/mm] = 1$

1) Homogener Teil:
Charakterisches Polynom lautet $p(z) = z - 2$
Die einzige Nullstelle lautet 2 mit Vielfachheit 1. Also ist die explizite Darstellung des homogenen Teils [mm] $a_n [/mm] = k * [mm] 2^{n}$ [/mm]

2) Inhomogerner Teil:
Der inhomogene Anteil der Rekursion ist $q = -3n + 4$, also linear.
Als Ansatz wähle ich also [mm] $a_n [/mm] = yn + z$ und setze dies in die Rekursion ein.

$ y(n+1) + z = 2(yn +z) - 3n + 4 $
$ y-z - 4 = n(y-3)$

Daraus folgt das lineare Gleichungssystem:
$ y - z = 4 $
$ y - 3 = 0 $

$ [mm] \Rightarrow [/mm] y = 3, z = -1 $

Also insgesamt ergibt sich für die Summe der homogenen und ihomogenen Lösung:

[mm] $a_n [/mm] = k * [mm] 2^{n} [/mm] + 3n - 1 $

Fehlt nur noch das Ensetzen der Anfangsbedingung:

[mm] $a_0 [/mm] = k * [mm] 2^{0} [/mm] + 3 * 0 - 1 = 1$
$ [mm] \gdw [/mm] k - 1 = 1 [mm] \Rightarrow [/mm] k = 2$

Also folgt für die explizite Formel:
[mm] $a_n [/mm] = [mm] 2^{n+1} [/mm] + 3n - 1$

Die Lösung im Buch lautet hingegen $ [mm] a_n [/mm] = [mm] -2^n [/mm] + 3n +2$


Aufgabe 2 habe ich nach demselben Verfahren gelöst. Ich habe auch beachtet, dass das charakterische Polynom die Nullstelle 2 mit Vielfachheit 2 besitzt.
Mein Lösung: [mm] $a_n [/mm] = 9 * [mm] 2^n [/mm] + 9 * n * [mm] 2^n [/mm] + [mm] 3^n$ [/mm]
Lösung im Buch: [mm] $a_n [/mm] = [mm] 2^n [/mm] + 5 * n * [mm] 2^n [/mm] + [mm] 3^{n+2}$ [/mm]

Was ist da los? Was hab ich denn falsch gemacht?
Help me, pleaaase! :-(

viele Grüße

jboss


        
Bezug
lineare inhomogene Rekursion: Tipp
Status: (Antwort) fertig Status 
Datum: 10:10 Fr 18.07.2008
Autor: MarthaLudwig

Hallo jboss!

Berechne a0,a1,a2 .
Du wirst erkennen,daß Deine Lösungen beide richtig sind,und die Lösungen aus dem Buch sind falsch.

Grüße Martha

Bezug
                
Bezug
lineare inhomogene Rekursion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:04 Fr 18.07.2008
Autor: jboss

Oh cool, hätte ich aber auch selber drauf kommen können :-(
Ich danke dir für den Hinweis.

viele Grüße

jboss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]