www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10lineares Gleichungssystem
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - lineares Gleichungssystem
lineares Gleichungssystem < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineares Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:02 Do 25.05.2006
Autor: song_for_me

Wie löst man aufgaben eines Lösungsverfahren für lineare Gleichungen??
Bitte helft mir....

BSp:
x+y-z=0
x-y+z=1
-x+y+z=-2
Wie löst man so was!?
ICh brauche dringend Hilfe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
lineares Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 11:09 Do 25.05.2006
Autor: Disap

Hallo.
> Wie löst man aufgaben eines Lösungsverfahren für lineare
> Gleichungen??

Kommt ganz darauf an, was du in der Schule dazu gelernt hast. Prinzipiell lernt man ja: Additions-/Subtraktionsverfahren oder Einsetzungsverfahren oder Gleichsetzungsverfahren. Recherchier mal im www danach.

>  Bitte helft mir....
>  
> BSp:

Gleichung I  x+y-z=0
Gleichung II  x-y+z=1
Gleichung III  -x+y+z=-2

Additionsverfahren

z. B. (I+II)

x+y-z+(x-y+z)=0+1

Man muss immer darauf achten, dass sich bei so einem Verfahren auch eine Größe 'herausfliegt' wie z. b. das y in diesem Fall +y + (-y) = 0 -Das Y fällt also weg.
  
Als Lösung erhalte ich x=0.5 y=-1 z=-0.5

>  Wie löst man so was!?
>  ICh brauche dringend Hilfe

Ich würde vorschlagen, dass du deine Frage etwas konkreter stellst und ein Verfahren gezielt ansprichst, weil ich mir nicht unnötig die Mühe machen will und jedes Verfahren einzelnd erklären möchte. Ich hoffe, dass du dafür ein wenig Verständnis hast.

>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>  

Liebe Grüße
[cap]
Disap

Bezug
        
Bezug
lineares Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 Do 25.05.2006
Autor: Bastiane

Hallo!

> Wie löst man aufgaben eines Lösungsverfahren für lineare
> Gleichungen??
>  Bitte helft mir....
>  
> BSp:
>  x+y-z=0
>  x-y+z=1
>  -x+y+z=-2
>  Wie löst man so was!?
>  ICh brauche dringend Hilfe

Ich bevorzuge das Einsetzungsverfahren. Das ist einfach nur schematisch (man muss also nicht denken, was man jetzt am besten macht) und es funktioniert immer:

Du löst z. B. die erste Gleichung nach x auf und erhältst: $x=z-y$. Das setzt du z. B. in die zweite Gleichung ein: $x-y+z=1 [mm] \gdw [/mm] (z-y)-y+z=1$ und formst es ein bisschen um: [mm] \gdw [/mm] $2z-2y=1$. Das wiederum löst du z. B. nach z auf: [mm] \gdw [/mm] $2z=1+2y$ [mm] \gdw $z=\bruch{1}{2}+y$ [/mm] und das kannst du nun erstmal in deine x-Gleichung einsetzen: $x=z-y$ [mm] \gdw $x=(\bruch{1}{2}+y)-y=\bruch{1}{2}$, [/mm] und diese beiden "Ergebnisse" setzt du nun in die letzte Gleichung ein: $-x+y+z=-2$ [mm] \gdw $-\bruch{1}{2}+y+(\bruch{1}{2}+y)=-2$ [/mm] und das jetzt nur noch nach y umformen: [mm] $\gdw [/mm] 2y=-2$ [mm] \gdw [/mm] $y=-1$. Und daraus folgt für z: [mm] $z=\bruch{1}{2}+y=\bruch{1}{2}-1=-\bruch{1}{2}$. [/mm]
Fertig. :-)

Viele Grüße
Bastiane
[cap]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]