www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Abbildungenlinearisieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - linearisieren
linearisieren < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

linearisieren: sie folgendes Problem
Status: (Frage) beantwortet Status 
Datum: 16:20 Di 07.08.2012
Autor: domerich

Aufgabe
Linearisieren sie folgendes Problem
min [mm] 3|x_1-2|+4|x_1-4| [/mm]

habe es mal versucht:

min z

udN

[mm] 3(x_1-2)+4(x_1-4)\le [/mm] z
[mm] -3(x_1-2)+4(x_1-4)\le [/mm] z
[mm] -3(x_1-2)-4(x_1-4)\le [/mm] z
[mm] 3(x_1-2)-4(x_1-4)\le [/mm] z

[mm] z\ge0 [/mm]

kann da jemand was zu sagen? Dankeschön!

        
Bezug
linearisieren: Eine Idee
Status: (Antwort) fertig Status 
Datum: 18:18 Di 07.08.2012
Autor: Marcel08

Hallo!


> Linearisieren sie folgendes Problem
>  min [mm]3|x_1-2|+4|x_1-4|[/mm]


Ist das die vollständige Aufgabenstellung?



>  habe es mal versucht:
>  
> min z
>  
> udN
>  
> [mm]3(x_1-2)+4(x_1-4)\le[/mm] z
>  [mm]-3(x_1-2)+4(x_1-4)\le[/mm] z
>  [mm]-3(x_1-2)-4(x_1-4)\le[/mm] z
>  [mm]3(x_1-2)-4(x_1-4)\le[/mm] z
>  
> [mm]z\ge0[/mm]
>  
> kann da jemand was zu sagen? Dankeschön!



Ausgehend von der Gleichung

[mm] z(x_{1})=3|x_1-2|+4|x_1-4| [/mm]


würde ich vielleicht wie folgt ansetzen. Man hat ja zunächst

[mm] |x_{1}-2|=\begin{cases} +(x_{1}-2), & \mbox{für } x_{1}-2\ge0\gdw{x_{1}}\ge2 \mbox{ } \\ -(x_{1}-2), & \mbox{für } x_{1}-2\le0\gdw{x_{1}}\le2 \mbox{ } \end{cases} [/mm]


sowie

[mm] |x_{1}-4|=\begin{cases} +(x_{1}-4), & \mbox{für } x_{1}-4\ge0\gdw{x_{1}}\ge4 \mbox{ } \\ -(x_{1}-4), & \mbox{für } x_{1}-4\le0\gdw{x_{1}}\le4 \mbox{ } \end{cases} [/mm]


woraus sich unmittelbar die Unterscheidung der folgenden vier Fälle

(1) [mm] x_{1}-2\ge0 [/mm] und [mm] x_{1}-4\ge0\Rightarrow{+3(x_{1}-2)+4(x_{1}-4)={z}}\gdw\underline{{z}=+7x_{1}-22}, [/mm] mit [mm] (x_{1}\ge2 [/mm] und [mm] x_{1}\ge4)\gdw{x_{1}}\ge4 [/mm]

(2) [mm] x_{1}-2\ge0 [/mm] und [mm] x_{1}-4\le0\Rightarrow{+3(x_{1}-2)-4(x_{1}-4)={z}}\gdw\underline{{z}=-1x_{1}+10}, [/mm] mit [mm] (x_{1}\ge2 [/mm] und [mm] x_{1}\le4)\gdw{x_{1}}\in[2,4] [/mm]

(3) [mm] x_{1}-2\le0 [/mm] und [mm] x_{1}-4\ge0\Rightarrow{-3(x_{1}-2)+4(x_{1}-4)={z}}\gdw\underline{{z}={+1x_{1}}-10}, [/mm] mit [mm] (x_{1}\le2 [/mm] und [mm] x_{1}\ge4)\gdw{Widerspruch} [/mm]

(4) [mm] x_{1}-2\le0 [/mm] und [mm] x_{1}-4\le0\Rightarrow{-3(x_{1}-2)-4(x_{1}-4)={z}}\gdw\underline{{z}=-7x_{1}+22}, [/mm] mit [mm] (x_{1}\le2 [/mm] und [mm] x_{1}\le4)\gdw{x_{1}}\le2 [/mm]


ergibt.





Viele Grüße, Marcel

Bezug
                
Bezug
linearisieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:13 Di 07.08.2012
Autor: domerich

Ah hi Marcel :)

Ja das war alles was in der OR Klausur stand. Aber du hast es gleich gelöst, das war glaub ich nicht verlangt :) Aber sehr anschaulich hast du das gemacht, ich habs verstanden. Danke für die Mühe!

ps. wann ist der Master fertig? lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]