www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra Sonstigeslinerare unabhängigkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - linerare unabhängigkeit
linerare unabhängigkeit < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

linerare unabhängigkeit: Lösungsbasis
Status: (Frage) beantwortet Status 
Datum: 16:59 Di 07.10.2008
Autor: meldrolon

Aufgabe
Welche der folgenden Mengen von Funktionen konnen eine Losungsbasis einer homogenen linearen gewohnlichen Di erentialgleichung mit konstanten Koeffizienten bilden?

a.)  [mm] x^{2} [/mm] , [mm] e^{x} [/mm]  , [mm] e^{-2x} [/mm]   (antwort : falsch)

b.) [mm] e^{x} [/mm] , cos(x) , sin(x)           (antwort : wahr)

Hallo

Eine Lösungsbasis einer homogenen linearen gewohnlichen Differentialgleichung besteht ja aus zwei linear unabhängigen lösungen. Also müsste ich ja zeigen dass zwei von den angegebenen lösungen linear unabhängig oder abhängig sind. Aber wie kann ich das den bei diesen ausdrücken machen ?
Wenn ich die determinate der wronski matrix ausrechen kommt immer ungleich 0 raus was lin UNabh. bedeutet aber das scheind ja anscheinend bei a) falsch zu sein .

Kann mir jmd weiterhelfen?

danke meldro




        
Bezug
linerare unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:04 Di 07.10.2008
Autor: Merle23


> Welche der folgenden Mengen von Funktionen konnen eine
> Losungsbasis einer homogenen linearen gewohnlichen
> Di erentialgleichung mit konstanten Koeffizienten bilden?
>  
> a.)  [mm]x^{2}[/mm] , [mm]e^{x}[/mm]  , [mm]e^{-2x}[/mm]   (antwort : falsch)
>  
> b.) [mm]e^{x}[/mm] , cos(x) , sin(x)           (antwort : wahr)


>  Hallo
>
> Eine Lösungsbasis einer homogenen linearen gewohnlichen
> Differentialgleichung besteht ja aus zwei linear
> unabhängigen lösungen. Also müsste ich ja zeigen dass zwei
> von den angegebenen lösungen linear unabhängig oder
> abhängig sind. Aber wie kann ich das den bei diesen
> ausdrücken machen ?

Wie kommst du auf zwei? Je nach Ordnung der DGL kann der Lösungsraum doch beliebige Dimension haben.

>  Wenn ich die determinate der wronski matrix ausrechen
> kommt immer ungleich 0 raus was lin UNabh. bedeutet aber
> das scheind ja anscheinend bei a) falsch zu sein .

Die Funktionen sind ja auch linear unabhängig.

>  
> Kann mir jmd weiterhelfen?
>  

Wie sieht denn der Lösungsraum einer allgemeinen, homogenen, linearen, gewöhnlichen Di fferentialgleichung mit konstanten Koeffizienten aus? Stichwort: charakteristisches Polynom. Wink mit dem Zaunpfahl: []hier.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]