ln von x? < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | ich will die Fkt auflösen....
0.5= x*e^-x+e^-x /ln
ln(0.5) = ? -x
so da nun meine frage wie mche ich ln von irgendwas mal [mm] e^x [/mm] ???
|
kann mir das jemand bitte erklären? danke
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:20 Mi 21.10.2009 | Autor: | M.Rex |
Hallo
Ganz so einfach geht das leider nicht.
Du hast:
[mm] \bruch{1}{2}=x*e^{-x}+e^{-x}
[/mm]
Das kann man umschreiben zu:
[mm] \bruch{1}{2}=x*e^{-x}+e^{-x}
[/mm]
[mm] \gdw \bruch{1}{2}=(x+1)*e^{-x}
[/mm]
Jetzt gibt es aber keine Möglichkeit, das ganze nach x aufzulösen, du hast hier nur die Möglichkeit, die Lösung zu erraten, oder ein geeignetes Näherungsverfahren zu nutzen.
Woher kommt denn die Aufgabe? Gibt es evtl. noch weitere Informationen dazu?
Marius
|
|
|
|
|
Aufgabe | die gehört zu einem größenernaufgabenkomplex einer abituraufgabe.....sollten wir lösen....also kann man solche aufgaben nur mit der solvefkt zum beispiel lösen?
und wie löst man dann das auf?
f´(x)= -10e^(-2x)+2e^(-0.5x ) =0 ???
10e^(-2x)=2e^(-0.5)
[mm] \bruch{10}{e^(2x)}= \bruch [/mm] {2}{e^(0.5x)}
[mm] 5=\bruch{ e^(2x)}{e^(0.5x)}
[/mm]
so und wie gehts da weiter? wenn ich ln mache ist es logisch kommt raus
ln5 = 1.5x und dan einfach durch 15
aber nehmen wir an ich möchte [mm] e^2/e^0.5x [/mm] ´´kürzen" wie macht man das? |
vielen dank für antwort.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:22 Mi 21.10.2009 | Autor: | fred97 |
> die gehört zu einem größenernaufgabenkomplex einer
> abituraufgabe.....sollten wir lösen....also kann man
> solche aufgaben nur mit der solvefkt zum beispiel lösen?
> und wie löst man dann das auf?
> f´(x)= -10e^-2x+2e^-0.5x =0 ???
> 10e^-2x=2e^-0.5
> [mm]10/e^2= 2/e^0.5x[/mm]
> 5= [mm]e^2x/e^0.5x[/mm]
>
> so und wie gehts da weiter? wenn ich ln mache ist es
> logisch kommt raus
> ln5 = 1.5x und dan einfach durch 15
Wenn Du meinst, durch 1,5 teilen, so ligst Du richtig
> aber nehmen wir an ich möchte [mm]e^2/e^0.5x[/mm]
Meinst Du [mm] \bruch{e^2}{e^{0,5x}} [/mm] ? Wenn ja, so verfahre nach der Regel
[mm] $\bruch{a^p}{a^q} [/mm] = [mm] a^{p-q}$
[/mm]
> ´´kürzen" wie macht man das?
"Aufgaben und Fragen in lesbarer Form posten" , wie macht man das ?
FRED
> vielen dank für antwort.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:32 Mi 21.10.2009 | Autor: | M.Rex |
Hallo
Alternativ geht das auch mit den Nullprodukt:
[mm] -10e^{-2x}+2e^{-0.5x}=0 [/mm]
[mm] \gdw 2e^{-0,5x}*(5e^{-1,5x}+1)=0
[/mm]
[mm] \Rightarrow 2e^{-0,5x}=0 \vee 5e^{-1,5x}+1=0
[/mm]
Marius
P.S.: Ich gebe Fred recht, versuche mal, deine Aufgaben etwas besser zu formulieren, das geht mit dem Formeleditor echt gut. Du kannst ja mal eine Formel von mir anklicken, dann bekommst du den Quelltext angezeigt.
|
|
|
|