www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysislog-konvex-Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - log-konvex-Funktionen
log-konvex-Funktionen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

log-konvex-Funktionen: Rechnung
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:11 So 19.12.2004
Autor: nemo102

Hallo!

Bin gerade dabei den folgenden Satz durchzugehen:
Angenommen f(x) ist eine zweimal stetig diff.bare Funktion. Wenn die Ungleichung
f(x)>0,  [mm] f(x)f''(x)-(f'(x))^2 \ge [/mm] 0
gilt, dann f(x) ist log-konvex.

In meinem vorliegenden Beweis heißt es, dass der zweite abgeleitete log f(x) den Wert
[mm] \bruch{f(x)f''(x)-(f'(x))^2}{(f(x))^2} [/mm]
hat.

Hab den Wert jetzt schon mehrmals nachgerechnet und komme einfach nicht drauf. Kann mir da jemand von euch helfen und mir die Rechenschritte explizit aufschreiben?

Gruß Nemo





        
Bezug
log-konvex-Funktionen: deutlicher Hinweis
Status: (Antwort) fertig Status 
Datum: 15:50 So 19.12.2004
Autor: Peter_Pein

Hallo Nemo,
ich habe immer ein schlechtes Gewissen, wenn ich Lösungen "vorsage". Deshalb nur eine Anleitung:

erste Ableitung: mit Kettenregel (auch bekannt als "innere mal äußere").
zweite Ableitung: Quotientenregel

zur Erinnerung:
[mm] (\bruch{f(x)}{g(x)})'=\bruch{f'(x)*g(x)+f(x)*g'(x)}{g(x)^{2}} [/mm]

und nun noch "sehen", was Du für f bzw. g dort einsetzen mußt.

Ich hoffe, dass es Dir hilft,
Peter


Bezug
        
Bezug
log-konvex-Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:43 Mo 20.12.2004
Autor: nemo102

Hallo!

Danke für die Antwort! Hab es nachgerechnet und bin drauf gekommen!

Gruß Silke



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]