www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationlogarithmische Spirale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - logarithmische Spirale
logarithmische Spirale < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

logarithmische Spirale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 So 03.02.2008
Autor: MischiT1

Aufgabe
F¨ur die logarithmische Spirale [mm] r(\gamma) [/mm] = [mm] e^{\gamma} [/mm] bestimme man alle im Intervall 0 [mm] \le \gamma \le \\2pi [/mm] gelegenen
Punkte mit waagerechter und senkrechter Tangente.

Die Lösung habe ich im Anhang.

So und jetzt meine Frage. Wiso kann ich bei der waagrechten Tangente nicht folgendenes machen:

$ [mm] sin(\gamma) [/mm] = [mm] -cos(\gamma) [/mm] $

$ [mm] \bruch{sin(\gamma)}{cos(\gamma)} [/mm] = -1 $

$ [mm] tan(\gamma) [/mm] = -1 $

$ [mm] \gamma [/mm] = [mm] -\bruch{1}{4}*\pi [/mm] $

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
logarithmische Spirale: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 So 03.02.2008
Autor: MathePower

Hallo Mischi,

> F¨ur die logarithmische Spirale [mm]r(\gamma)[/mm] = [mm]e^{\gamma}[/mm]
> bestimme man alle im Intervall 0 [mm]\le \gamma \le \\2pi[/mm]
> gelegenen
>  Punkte mit waagerechter und senkrechter Tangente.
>  Die Lösung habe ich im Anhang.
>  
> So und jetzt meine Frage. Wiso kann ich bei der waagrechten
> Tangente nicht folgendenes machen:
>  
> [mm]sin(\gamma) = -cos(\gamma)[/mm]
>  

Aus dem einfachen Grund, weil da Lösungen verlorengehen.

> [mm]\bruch{sin(\gamma)}{cos(\gamma)} = -1[/mm]
>  
> [mm]tan(\gamma) = -1[/mm]
>  
> [mm]\gamma = -\bruch{1}{4}*\pi[/mm]

Gruß
MathePower

Bezug
                
Bezug
logarithmische Spirale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:57 So 03.02.2008
Autor: MischiT1

Und was muss ich dann machen, damit ich alle Lösungen bekomme?

Bezug
                        
Bezug
logarithmische Spirale: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 So 03.02.2008
Autor: MathePower

Hallo Mischi,

> Und was muss ich dann machen, damit ich alle Lösungen
> bekomme?

Bei der Lösung muß die Periodizität berücksichtigt und dann auf den Definitionsbereich angepasst werden.

Gruß
MathePower

Bezug
                                
Bezug
logarithmische Spirale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:31 So 03.02.2008
Autor: MischiT1

So wie ich das sehe, wurde bei der Lösung bei $ [mm] \gamma_2 [/mm] $ nur $ [mm] \gamma_1 [/mm] + [mm] \pi [/mm] $ gemacht.

Bei der senkrechten Tangente würde das mit dem Tangens ja funktionieren aber bei der waagrechten irgendwie nicht. Warum?

Bezug
                                        
Bezug
logarithmische Spirale: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 So 03.02.2008
Autor: MathePower

Hallo Mischi,

> So wie ich das sehe, wurde bei der Lösung bei [mm]\gamma_2[/mm] nur
> [mm]\gamma_1 + \pi[/mm] gemacht.
>  
> Bei der senkrechten Tangente würde das mit dem Tangens ja
> funktionieren aber bei der waagrechten irgendwie nicht.
> Warum?

Das funktioniert doch auch bei der waagrechten Tangente.

Gruß
MathePower

Bezug
                                                
Bezug
logarithmische Spirale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:02 So 03.02.2008
Autor: MischiT1


Bezug
                                                
Bezug
logarithmische Spirale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 So 03.02.2008
Autor: MischiT1

Das mit dem $ [mm] \gamma_2 [/mm] = [mm] \gamma_1 [/mm] + [mm] \pi [/mm] $ geht schon, nur weis ich nicht wie ich auf $ [mm] \gamma_1 [/mm] $ kommen soll. Wenn ich es mit dem Tangens mache kommt das raus, was ich schon oben geschrieben habe. In der Lösung steht aber, dass für $ [mm] \gamma_1 [/mm] = [mm] \bruch{3}{4}*\pi [/mm] $ rauskommt. Wie kommt man auf diesen Wert?

Bezug
                                                        
Bezug
logarithmische Spirale: Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 So 03.02.2008
Autor: MathePower

Hallo Mischi,


> Das mit dem [mm]\gamma_2 = \gamma_1 + \pi[/mm] geht schon, nur weis
> ich nicht wie ich auf [mm]\gamma_1[/mm] kommen soll. Wenn ich es mit
> dem Tangens mache kommt das raus, was ich schon oben
> geschrieben habe. In der Lösung steht aber, dass für
> [mm]\gamma_1 = \bruch{3}{4}*\pi[/mm] rauskommt. Wie kommt man auf
> diesen Wert?

So, wir haben also die Gleichung [mm]\tan \left ( \gamma \right ) = -1[/mm]

Hieraus ergibt sich [mm]\gamma=-\bruch{\pi}{4}[/mm]. Da der Tangens die Periode [mm]\pi[/mm] hat ergibt sich demnach [mm]\gamma_{k}=-\bruch{\pi}{4}+k \pi[/mm].

Für [mm]k=1[/mm] erhält man also [mm]\gamma_{1}=-\bruch{\pi}{4}+k \pi=\bruch{\pi}{4}+ \pi=\bruch{3}{4} \pi[/mm].

Gruß
MathePower

Bezug
                                                                
Bezug
logarithmische Spirale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:35 So 03.02.2008
Autor: MischiT1

Jetzt hat es klick gemacht.

Danke für die Antwort.

MfG Michael

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]