www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenlokal Lipschitz - stetig
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - lokal Lipschitz - stetig
lokal Lipschitz - stetig < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lokal Lipschitz - stetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:10 Mi 09.07.2008
Autor: Irmchen

Guten Tag!

Im Zusammenhang mit den lokalen und globalen Existenz - und Eindeutigkeitssätzen bei gewönlichen DGL haben wir den Begriff der lokalen Lipschitz - Stetigkeit  eingeführt.
Dabei wurde die folgende Bemerkung aufgeschrieben, die ich nicht verstehe.

Bemerkung :

Sei X offen in [mm] \mathbb R^n [/mm] und [mm] f: X \to \mathbb R [/mm] sei von der Klasse [mm] C^1 [/mm].
Dann ist f lokal -  Lipschitz - stetig.

Kann mir jemand erläutern warum dies so ist?
Den Tipp, den ich erhalten habe, ist, dass dies nach dem Mittelwertsatz gilt....

Danke für die Hilfe!

Viele Grüße
Irmchen


        
Bezug
lokal Lipschitz - stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 Mi 09.07.2008
Autor: Merle23


> Guten Tag!
>  
> Im Zusammenhang mit den lokalen und globalen Existenz - und
> Eindeutigkeitssätzen bei gewönlichen DGL haben wir den
> Begriff der lokalen Lipschitz - Stetigkeit  eingeführt.
>  Dabei wurde die folgende Bemerkung aufgeschrieben, die ich
> nicht verstehe.
>  
> Bemerkung :
>  
> Sei X offen in [mm]\mathbb R^n[/mm] und [mm]f: X \to \mathbb R[/mm] sei von
> der Klasse [mm]C^1 [/mm].
>  Dann ist f lokal -  Lipschitz - stetig.
>  
> Kann mir jemand erläutern warum dies so ist?

Es ist einfach ein Satz. Einfach so erläutern kann ich dir das nicht... der Beweis ist auch nicht so ganz trivial.

>  Den Tipp, den ich erhalten habe, ist, dass dies nach dem
> Mittelwertsatz gilt....

MWS für höherdimensionale Funktionen? Kenn' ich nur für [mm] \IR^2, [/mm] und schon da ist er recht kompliziert.

>  
> Danke für die Hilfe!
>  
> Viele Grüße
>  Irmchen
>  

Bezug
        
Bezug
lokal Lipschitz - stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 13:54 Mi 09.07.2008
Autor: fred97

Behauptung:
ei X offen in $ [mm] \mathbb R^n [/mm] $ und $ f: X [mm] \to \mathbb [/mm] R $ sei von der Klasse $ [mm] C^1 [/mm] $.
Dann ist f lokal -  Lipschitz - stetig.


Beweis:Zu zeigen ist: ist K eine abgeschlossene Kreisscheibe in X, so ex. ein L>_ 0 mit: |f(u)-f(v)|<_L||u-v|| für jedes u und jedes v in K.

Da f stetig differenzierbar ist, ist ||f'|| auf K beschränkt, es ex. also ein L>_0, so dass   ||f'(w)||<_L für jedes w in K.

Seien nun u und v in K. Nach dem Mittelwertsatz gibt es ein w in K (genauer :
w liegt auf der Verbindungsstrecke von u und v) mit:

    f(u)-f(v) = f'(w)*(u-v)   (* ist hier das Skalarprodukt auf [mm] R^n [/mm] ).

Folglich (mit der Cauchy-Schwarzschen -Ungleichung)

   |f(u)-f(v)| = |f'(w)*(u-v)| <_ ||f'(w)|| ||u-v|| <_ L||u-v||.

FRED




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]