lokale Extrema < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:51 Di 07.06.2005 | Autor: | VHN |
Hallo, leute!
Ich hätte da eine Verständnisfrage zur Bestimmung von lokalen Extrema.
Angenommen, ich habe eine Funktion, die ich zweimal ableite. Die Hessematrix dieser Funktion würde zum Beispiel jetzt so aussehen:
H f(x,y) = [mm] \pmat{ 2 & 4 & -2 \\ 4 & 10 & -2 \\ 2 & -2 & 18}
[/mm]
wie bestimme ich, ob es positiv/negativ definit ist, bzw. indefinit oder semidefinit?
Ich weiß, dass eine Diagonalmatrix, dessen Diagonaleinträge alle positiv (negativ) sind, positiv (negativ) definit ist.
Und dass eine Diagonalmatrix, die sowohl negative als auch positive Diagonaleinträge hat, indefinit ist.
Und dass deine Diagonalmatrix, die positive (negative) Werte als auch die Null als Diagonaleinträge hat, positiv (nagativ) semidefinit ist.
Das gilt aber wie gesagt nur, wenn die Matrix in Diagonalgestalt vorliegt, was bei mir ja nicht der Fall ist.
Außerdem tauchen bei mir bei der hessematrix keine x bzw. y mehr aus. das heißt, ich kann die koordinaten des stationären punktes, den ich vorher mal berechnet habe, auch nirgends einsetzen.
Um zu entscheiden, was hier für meine hessematrix gilt, gibt es doch so ein verfahren, bei dem man alle "unterdeterminanten" von A betrachtet, oder?
stimmt das dann so, wenn ich sage:
[mm] det(hess_{1}) [/mm] = 2 > 0
wobei das i von [mm] hess_{i} [/mm] anzeigen soll, wieviele zeilen sowie spalten ich von der unsprünglichen hessematrix betrachte. bei [mm] hess_{1} [/mm] betrachte ich also nur die elemente, die in der ersten zeile sowie ersten spalte sind, also die 2.
[mm] det(hess_{2} [/mm] = 2 x 10 - 4 x 4 = 4 > 0
(hier betrachte man nur die elemente, die übrig bleiben, wenn man die hessematrix auf eine 2,2-matrix reduzieren würde)
[mm] det(hess_{3} [/mm] = 2 x 10 x 18 - 2 x 2 x 4 - 2 x 2 x 4 - 4 x 4 x 18 - 2 x 2 x 2 - 2 x 10 x 2 = -8 < 0
da nun 2 werte positiv sind, und einer negativ, ist die matrix folglich indefinit. das heißt, es gibt kein lokales extremum, also liegt ein sattelpunkt vor. Stimmt das so?
stimmt das so verfahren, wie ich es angewendet habe, so, oder hab ich da was falsch verstanden?
Vielen dank für eure hilfe!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:29 Di 07.06.2005 | Autor: | BastiR |
Hallo,
ja, das ist genauso richtig wie du es gemacht hast.
Der Satz von Hurwitz besagt, eine Matrix ist genau dann positiv definit, wenn alle Hauptabschnittsdeterminanten positiv sind und negativ definit, wenn alle Hauptabschnittsdeterminanten alternierende Vorzeichen haben.
Da bei dir weder das einen noch das andere vorkommt und sie auch nicht semidefinit ist (Determinante = 0), muss sie also indefinit sein.
Ich hoffe ich konnte dir helfen,
Sebastian
|
|
|
|