www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikmathematisches Pendel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Physik" - mathematisches Pendel
mathematisches Pendel < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mathematisches Pendel: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:56 Mi 16.11.2011
Autor: Brombeere

Aufgabe
Angenommen, man könnte die Fadenlaenge
L=10m eines Pendels auf 0,1mm genau bestimmen
und die Zeit auf 10 ms. Wie viele
Schwingungsperioden muß man messen, damit
der Einfluss der Zeitungenauigkeit auf die Bestimmung
von g genau so groß wird wie der
der Längenungenauigkeit? Wie genau ist dann g
bestimmt?

Ok, von der Sache überblick ich die Aufgabe schon, ist auch nicht sonderlich schwierig nach meinem ersten Empfinden. Leider gibt es so manche unterschiedliche Lösungen.

Meine Gedanken:

Periodendauer T eines Fadenpendels:

T = [mm] 2\pi\wurzel{\bruch{L}{g}} [/mm]

ergibt:

g = [mm] 4\pi^2\bruch{L}{T^2} [/mm]

Dann der kombinierte Fehler zweier Messgrößen:

[mm] \Delta [/mm] A(b,c) = [mm] \{\{\bruch{dA}{db} * \Delta b\}^2 + \{\bruch{dA}{dc} * \Delta c\}^2\}^\bruch{1}{2} [/mm]

angewendet:

[mm] \Delta [/mm] g = [mm] \{\{\bruch{dg}{dL} * \Delta L\}^2 + \{\bruch{dg}{dT} * \Delta T\}^2\}^\bruch{1}{2} [/mm]

[mm] \Delta [/mm] g = dg * [mm] \{\{\bruch{\Delta L}{L}\}^2 + \{\bruch{\Delta T}{T}\}^2\}^\bruch{1}{2} [/mm]

heißt, die Ungenauigkeit von g ist gleichwertig von beiden anderen Ungenauigkeiten abhängig.

Daher meiner Meinung nach:

[mm] \bruch{\Delta L}{L} [/mm] = [mm] \bruch{\Delta T}{T} [/mm] = 10^-5

mit [mm] \Delta [/mm] T = 10ms würde bedeuten:

T = 1000s und bei einer Schwingungsdauer von 6,34s hieß dies, das der Einfluss beider Ungenauigkeiten bei 157,63 Schwingungen gleichgroß ist.

Meine Frage nun: Ist diese Überlegung soweit richtig? Eine Alternatives Ergebnis wäre 315.26. Kommt daher, dass mit folgender Formel gerechnet wurde:

[mm] \Delta [/mm] g = dg * [mm] \{\{\bruch{\Delta L}{L}\}^2 + \{\bruch{2\Delta T}{T}\}^2\}^\bruch{1}{2} [/mm]

Allerdings hab ich hier keine Erklärung wo die [mm] 2\Delta [/mm] T herkommen.

Vielen Dank soweit

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
mathematisches Pendel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:30 Mi 16.11.2011
Autor: leduart

Hallo
dg ist doch kein Faktor, den man ausklammern kann!
deine "Umformung"

$ [mm] \Delta [/mm] $ g = $ [mm] \{\{\bruch{dg}{dL} \cdot{} \Delta L\}^2 + \{\bruch{dg}{dT} \cdot{} \Delta T\}^2\}^\bruch{1}{2} [/mm] $
das ist noch richtig
$ [mm] \Delta [/mm] $ g = dg * $ [mm] \{\{\bruch{\Delta L}{L}\}^2 + \{\bruch{\Delta T}{T}\}^2\}^\bruch{1}{2} [/mm] $
ist Unsinn!
1. [mm] (dg(L,T))^2 [/mm] ausklammern! was ist denn [mm] (dg)^2 [/mm]
2. dL durch L ersetzen!
Was wohl sollte [mm] \Deltag=dg*(...) [/mm] bedeuten?
???????????????????????????????
also bild mal die 2 Ableitungen!
unten wurde versucht [mm] \Delta/g [/mm] also den relativen fehler auszurechnen.
das solltest du aber mit dem richtigen Vorgehen machen.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]