www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1max = min
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis des R1" - max = min
max = min < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

max = min: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:00 Di 13.11.2007
Autor: abi2007LK

Hallo,

folgende Aufgabe soll ich lösen:

Für alle a, b [mm] \in \IR. [/mm] gilt:

[mm] max\{a, b\} [/mm] = [mm] \bruch{a+b+| a-b |}{2} [/mm]

und

[mm] min\{a, b\} [/mm] = [mm] \bruch{a+b -| a-b |}{2} [/mm]

Mein Ansatz, der mir heute Nach eingefallen ist geht leider irgendwie nicht auf:

a + b = [mm] max\{a, b\} [/mm] + [mm] min\{a, b\} [/mm]

Nun kann ich für [mm] max\{a, b\} [/mm] den gegeben Ausdruck einsetzen:

a + b = [mm] \bruch{a+b+| a-b |}{2} [/mm] + [mm] min\{a, b\} [/mm]

Löse ich nun nach min auf kommt irgendwie nicht das raus, was ich zeigen soll. Habt ihr einen Tipp?

        
Bezug
max = min: Antwort
Status: (Antwort) fertig Status 
Datum: 13:35 Di 13.11.2007
Autor: angela.h.b.


> Hallo,
>  
> folgende Aufgabe soll ich lösen:
>  
> Für alle a, b [mm]\in \IR.[/mm] gilt:
>  
> [mm]max\{a, b\}[/mm] = [mm]\bruch{a+b+| a-b |}{2}[/mm]
>  
> und
>  
> [mm]min\{a, b\}[/mm] = [mm]\bruch{a+b -| a-b |}{2}[/mm]
>  
> Mein Ansatz, der mir heute Nach eingefallen ist geht leider
> irgendwie nicht auf:
>  
> a + b = [mm]max\{a, b\}[/mm] + [mm]min\{a, b\}[/mm]
>  
> Nun kann ich für [mm]max\{a, b\}[/mm] den gegeben Ausdruck
> einsetzen:
>  
> a + b = [mm]\bruch{a+b+| a-b |}{2}[/mm] + [mm]min\{a, b\}[/mm]
>  
> Löse ich nun nach min auf kommt irgendwie nicht das raus,
> was ich zeigen soll. Habt ihr einen Tipp?

Hallo,

diese Aufgabe würde ich komplett mit meinem Hausfrauenverstand bewältigen.

Die zu betrachtende [mm] Menge\{a,b\} [/mm] ist ja recht übersichtlich.

Da a,b aus [mm] \IR [/mm]  sind, also aus einem angeordneten Korper, kann es nur 3 Fälle geben: a<b, a>b, a=b.

Max und Min kann in diesen Fällen sogar ein Vorschulkind bestimmen...

Auf der rechten Seite mußt Du dann die Def. der Betragsfunktion verwenden.

Gruß v. Angela

Bezug
                
Bezug
max = min: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:20 Di 13.11.2007
Autor: abi2007LK

Ja okay - angenommen a > b, dann:

[mm] max\{a, b\} [/mm] = $ [mm] \bruch{a+b+a-b }{2} [/mm] $ = a

und weil a > b ist: [mm] min\{a, b\} [/mm] = b

Und nun?

Bezug
                        
Bezug
max = min: einfacher
Status: (Antwort) fertig Status 
Datum: 19:30 Di 13.11.2007
Autor: Loddar

Hallo abi2007LK!


Beweise Deine Gleichung doch mal von der anderen Seite her (also von rechts nach links):

[mm] $$\blue{\max\{a,b\}}+\green{\min\{a,b\}} [/mm] \ = \ [mm] \blue{\bruch{a+b+|a-b|}{2}}+\green{\bruch{a+b-|a-b|}{2}} [/mm] \ = \ ...$$

Gruß
Loddar


Bezug
                        
Bezug
max = min: Antwort
Status: (Antwort) fertig Status 
Datum: 22:38 Di 13.11.2007
Autor: angela.h.b.



> und weil a > b ist: [mm]min\{a, b\}[/mm] = b
>  
> Und nun?

Nun überlegst Du Dir, was $ [mm] \bruch{a+b -| a-b |}{2} [/mm] $  ergibt.

Gruß v. Angela

Bezug
        
Bezug
max = min: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:44 Di 13.11.2007
Autor: statler

Hi,

ergänzend zu Angelas Antwort möchte ich noch sagen, daß man an diesem Fall sehr schön den Gebrauch von 'ohne Einschränkung der Allgemeinheit' üben kann :-)

Gruß
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]