www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebramaximale Ideale bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - maximale Ideale bestimmen
maximale Ideale bestimmen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

maximale Ideale bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:32 Mi 11.01.2012
Autor: Physy

Aufgabe
Es sei C der Ring aller stetiger Funktionen f : [0; 1] -> [mm] \IR. [/mm]
...
(b) Bestimme alle maximalen Ideale.




Hallo,

ich hatte vorher noch nichts mit Idealen zu tun und tue mir gerade sehr schwer, wie ich denn da herangehen soll.

Ich weiß, dass J genau dann ein maximales Ideal von C ist, wenn C/J ein Körper ist. Also die Menge aller Nebenklassen von J ein Körper ist. Solche Nebenklassen exist (C,+) ja kommutativ ist. Und die Menge aller Nebenklassen ist [mm] \{J+x|x \in C\}. [/mm] Trotz allem müsste ich aber doch erstmal einen Ansatz haben, wie ich auf die Ideale komme. Ich bin kein Mathematiker und würde mich über jede Antwort sehr freuen.

Gruß

        
Bezug
maximale Ideale bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:24 Mi 11.01.2012
Autor: hippias

Das ist sowiet ganz richtig. Ein maximales Ideal kann auf jeden Fall keine invertierbaren Elemente enthalten. Wann ist ein [mm] $f\in [/mm] C$ invertierbar? Sind z.B. $f(x)= x$ und $g(x)= [mm] x^{2}+1$ [/mm] in $C$ invertierbar? Mit Hilfe der Bedingung der Invertierbarkeit gelingt es die maximalen Ideale zu finden.
Hast Du schon einmal ein Beispiel fuer ein Ideal von $C$ gesehen?


Bezug
                
Bezug
maximale Ideale bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:41 Mi 11.01.2012
Autor: Physy

Nein, das habe ich nicht. Das ist die erste Aufgabe mit Idealen.

C ist doch auch schon ein Körper, oder? Denn (C,*) ist ja eine kommutative Gruppe.

[mm] J=\{2x,-2x,0\} [/mm] wäre ja bspw. kein Ideal. Es ist zwar J eine Teilmenge von C und (J,+) eine ablesche Gruppe, allerdings ist j*a=a*j nicht wieder in J für beliebige j [mm] \in [/mm] J und a [mm] \in [/mm] C.
Aber auch wenn ich die Menge aller Polynome nehmen würde, so wäre diese Bedingung verletzt (mit bspw. a=sin(x) [mm] \in [/mm] C). Egal wie ich es angehe, ich verletze die letzte Bedingung.

Bezug
                        
Bezug
maximale Ideale bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:45 Mi 11.01.2012
Autor: fred97


> Nein, das habe ich nicht. Das ist die erste Aufgabe mit
> Idealen.
>  
> C ist doch auch schon ein Körper, oder?

Nein.

>Denn (C,*) ist ja eine kommutative Gruppe.

Das stimmt nicht ! Hat denn ein f [mm] \in [/mm] C immer ein mult. Inv. ? Denke an Nullstellen.

FRED

>  
> [mm]J=\{2x,-2x,0\}[/mm] wäre ja bspw. kein Ideal. Es ist zwar J
> eine Teilmenge von C und (J,+) eine ablesche Gruppe,
> allerdings ist j*a=a*j nicht wieder in J für beliebige j
> [mm]\in[/mm] J und a [mm]\in[/mm] C.
>  Aber auch wenn ich die Menge aller Polynome nehmen würde,
> so wäre diese Bedingung verletzt (mit bspw. a=sin(x) [mm]\in[/mm]
> C). Egal wie ich es angehe, ich verletze die letzte
> Bedingung.


Bezug
                                
Bezug
maximale Ideale bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:56 Mi 11.01.2012
Autor: Physy

Stimmt, die Nullstellen habe ich vergessen. Nochmal bezogen auf meine letzte Antwort: Wie ist es denn überhaupt möglich ein solches Ideal zu erzeugen? Mal abgesehen vom Trivialen C=J

Bezug
                                        
Bezug
maximale Ideale bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Mi 11.01.2012
Autor: hippias

Die einfachste Methode ist ein sogenanntes Hauptideal zu bilden: Ist [mm] $f\in [/mm] C$, so ist $Cf$ ein Ideal von $C$.

Jedoch fuer Dich ist entscheidend: Die Elemente eines max. Ideals dueften nicht invertierbar sein, muessen also Nullstellen haben. Man koennte also vermuten: Fuer [mm] $x\in [/mm] [0,1]$ ist [mm] $L_{x}:= \{f\in C|f(x)= 0\}$ [/mm] ein Ideal; vielleicht sogar ein maximales...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]