www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysismaximierung vom umsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Schul-Analysis" - maximierung vom umsatz
maximierung vom umsatz < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

maximierung vom umsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:28 Fr 18.11.2005
Autor: Mathias_Z

hallo hab hier ein kleines problem und ich hoffe ihr könnt mir weiterhelfen.

es soll der maximale umsatz ermittelt werden. steigt der preis, so kaufen die
kunden weniger; senkt man den preis, so kaufen die kunden mehr.

bei einen preis von 100€ werden 10000 stück verkauft
bei 1€ mehr werden 100 st. weniger verkauft =>  101€ = 9900 stück
bei 1€ weniger werden 100 st. mehr verkauft =>    99€ = 10100 stück

  99 € * 10100 st =   999900 €
100 € * 10000 st = 1000000 € max. umsatz
101 € *   9900 st =   999900 €

wie gehe ich nun am einfachsten vor wenn ich einen anderen ausgangspunkt habe?

zb.

100€ = 9700 stück ?
o.
100€ = 10600 stück ?

(wieder mit +1€ = -100 st o. -1€ = +100 st)

weil ich mir nicht anders zu helfen wusste, hab ich bis jetzt immer die einzelnen
beträge multipliziert bis ich den max. umsatz hatte...

gibt es da nen einfacheren weg, der nicht ganz so aufwändig ist :-)?

danke mathias


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
maximierung vom umsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Sa 19.11.2005
Autor: Cool-Y

Hallo Matthias,
Der Umsatz u ist gleich der verkauften Stückzahl n multipliziert mit dem Preis pro Stück p: u=n*p.
Nun will ich eine Funktion n(p), die mir für einen Preis p den Wert n(p) liefert, die Anzahl der Stücke, die gekauft werden.
Weil n(p) immer um 100 größer wird, wenn ich p um 1 verringere, handelt es sich um eine lineare Funktion, also: n(p)=m*p+c.
Nun sammelt man das, was man über die Funktion weiß:
n(p)=m*p+c

n(100)=10000 [mm] \gdw [/mm] m*100+c=10000 [mm] \gdw [/mm] c=10000-100*m

n(p+1)=n(p)-100 [mm] \gdw [/mm] m*(p+1)+c=m*p+c-100 [mm] \gdw [/mm] m*(p+1)=m*p-100 [mm] \gdw [/mm] m=-100

[mm] \gdw [/mm] n(p)=-100*p+20000 (man hätte dies auch mit der Punkt-Steigungsform erreichen können).

Dies kann man jetzt oben einsetzen:

[mm] u=(-100*p+20000)*p=-100*p^{2}+20000*p [/mm]
[mm] u(p)=-100*p^{2}+20000*p [/mm]

Da ich nicht weiß, ob du Differenzielrechnung kennst, mach ich mal ohne weiter:

Nun sieht man(man könnte sich einmal ein Schaubild zeichnen, mit einer p-Achse und einer u-Achse), dass es sich bei u(p) um eine nach unten geöffnete Parabel handelt. Der Scheitelpunkt ist der höchste Punkt dieser Parabel. Jetzt muss man nur noch herausfinden, wo dieser Scheitelpunkt ist.
Das geht mit dieser Formel:
"Der Scheitelpunkt einer Parabel mit [mm] y=ax^{2}+bx+c [/mm] ist bei [mm] x=-\bruch{b}{2a}." [/mm]
Also bei uns:
[mm] p_{Max}=-\bruch{20000}{2*-100}=\bruch{20000}{200}=100. [/mm]
Also bekommt man bei einem Stückpreis von 100€ den maximalen Umsatz und zwar 1000000€.

Nun das ganze, wenn bei einem Preis von 100€ k Stücke verkauft werden:

n(p)=m*p+c

n(100)=k [mm] \gdw [/mm] m*100+c=k [mm] \gdw [/mm] c=k-100*m

n(p+1)=n(p)-100 [mm] \gdw [/mm] m*(p+1)+c=m*p+c-100 [mm] \gdw [/mm] m*(p+1)=m*p-100 [mm] \gdw [/mm] m=-100 [mm] \gdw [/mm] c=k+10000

Dann wäre die Umsatzfunktion [mm] u(p)=(-100*p+(k+10000))*p=-100*p^{2}+(k+10000)*p [/mm] und damit [mm] p_{max}=-\bruch{k+10000}{2*-100}=\bruch{k+10000}{200}=\bruch{k}{200}+50. [/mm]
Also bekommt man bei einem Stückpreis von [mm] (\bruch{k}{200}+50)€ [/mm] den maximalen Umsatz, nämlich ((0.5*k+5000)*(0.005*k+50))€.
Das wär für deine Beispiele:
k=9700
[mm] p_{Max}=98.5€ [/mm]
[mm] u_{Max}=970225€ [/mm]

k=10600
[mm] p_{Max}=103€ [/mm]
[mm] u_{Max}=1060900€ [/mm]

Wenn jetzt noch irgendwelche Unklarheiten entstehen, frag einfach nochmal nach.

Bezug
                
Bezug
maximierung vom umsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:32 Sa 19.11.2005
Autor: Mathias_Z

herzlichen dank! da wär ich nie draufgekommen...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]