www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenmehrdimensionale Taylorformel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - mehrdimensionale Taylorformel
mehrdimensionale Taylorformel < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mehrdimensionale Taylorformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Sa 01.11.2008
Autor: pape

Aufgabe
Bestimmen Sie die Taylor-Entwicklung der Funktion

[mm] f:R²\rightarrow [/mm] R, [mm] (x_1, x_2) \mapsto x_1^2x_2+sin(x_1-x_2) [/mm]

an der Stelle [mm] x^0=(\pi,\frac{\pi}{2})^T [/mm]

bis zur zweiten Ordnung.

Meine Frage habe ich gestern Mittag bereits dort gestellt, aber leider keine Antwort erhalten:
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.matheboard.de/thread.php?threadid=377237

----

Als Taylorformel habe ich das (x ist Vektor):

[mm] f:D\subset R^n\rightarrow [/mm] R
[mm] x_0 \in [/mm] D°
[mm] B_r(x_0)\subset [/mm] D wobei x [mm] \in B_r(x_0) [/mm] und f in [mm] B_r(x_0) [/mm] stetige partielle Ableitungen bis zur Ordnung m besitzt.
[mm] \alpha [/mm] ist ein Multiindex.

[mm] f(x)=\sum_{k=0}^{m-1}\sum_{\mid \alpha \mid=k } \frac{1}{\alpha !}D^{\alpha}f(x_0)(x-x_0)^\alpha+\int_{0}^{1}m(1-t)^{m-1}\frac{1}{\alpha !}\sum_{\mid \alpha \mid=m}D^{\alpha}f(x_0+t(x-x_0))\frac{(x-x_0)^\alpha}{\alpha !}dt [/mm]

Das ab dem Integral ist denke ich das Restglied, welches mich für die Aufgabe nicht weiter interessieren braucht?!

Ich schlüssel nun mal die Summe auf.

Für k=0 muss [mm] \mid\alpha\mid=0, [/mm] also [mm] \mid\alpha\mid=\sum_i^n\alpha_i=0\Rightarrow \alpha=(0,0) [/mm]
Es gibt also nur eine Möglichkeit für [mm] \alpha [/mm] und die innere Summe hat nur diesen einen Summanden:
[mm] \frac{1}{1}D^{(0,0)}f((\pi,\frac{\pi}{2}))((x_1,x_2)-(\pi,\frac{\pi}{2})) [/mm]

Die 0te Ableitung ändert ja erstmal nichts, also hat man
[mm] f((\pi,\frac{\pi}{2}))((x_1,x_2)-(\pi,\frac{\pi}{2})) [/mm]
[mm] =(\pi^2*\frac{\pi}{2}+sin(\pi-\frac{\pi}{2}))*((x_1,x_2)-(\pi,\frac{\pi}{2})) [/mm]
[mm] =\frac{\pi^3+2}{2}*(x_1-\pi,x_2-\frac{\pi}{2}) [/mm]

wobei mir dieser Schritt eigentlich nicht so ganz klar ist.. ich verstehe das [mm] D^{(0,0)}f(..) [/mm] nicht.

Ich kenne
[mm] D^{\alpha}f=\partial_{x_1}^{\alpha_1}\dots\partial_{x_n}^{\alpha_n}f [/mm]

aber was ist ein solches [mm] \partial_{x_i}^{\alpha_i} [/mm] ?
Die [mm] \alpha_i-te [/mm] Ableitung nach der i-ten Variable?

Falls ja, dann würde für n=2 [mm] D^{(\alpha_1,\alpha_2)}f [/mm] ein Produkt der verschiedenen Ableitungen sein, oder wie habe ich das zu verstehen?

Ist der Ansatz für die Entwicklung ansonsten richtig oder bin ich schon irgendwo auf dem Holzweg?

weitere Fragen könnten dann folgen  :)

Danke!

        
Bezug
mehrdimensionale Taylorformel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:36 So 02.11.2008
Autor: MathePower

Hallo pade,

> Bestimmen Sie die Taylor-Entwicklung der Funktion
>  
> [mm]f:R²\rightarrow[/mm] R, [mm](x_1, x_2) \mapsto x_1^2x_2+sin(x_1-x_2)[/mm]
>  
> an der Stelle [mm]x^0=(\pi,\frac{\pi}{2})^T[/mm]
>  
> bis zur zweiten Ordnung.
>  Meine Frage habe ich gestern Mittag bereits dort gestellt,
> aber leider keine Antwort erhalten:
>  Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
> http://www.matheboard.de/thread.php?threadid=377237
>  
> ----
>  
> Als Taylorformel habe ich das (x ist Vektor):
>  
> [mm]f:D\subset R^n\rightarrow[/mm] R
>  [mm]x_0 \in[/mm] D°
>  [mm]B_r(x_0)\subset[/mm] D wobei x [mm]\in B_r(x_0)[/mm] und f in [mm]B_r(x_0)[/mm]
> stetige partielle Ableitungen bis zur Ordnung m besitzt.
>  [mm]\alpha[/mm] ist ein Multiindex.
>  
> [mm]f(x)=\sum_{k=0}^{m-1}\sum_{\mid \alpha \mid=k } \frac{1}{\alpha !}D^{\alpha}f(x_0)(x-x_0)^\alpha+\int_{0}^{1}m(1-t)^{m-1}\frac{1}{\alpha !}\sum_{\mid \alpha \mid=m}D^{\alpha}f(x_0+t(x-x_0))\frac{(x-x_0)^\alpha}{\alpha !}dt[/mm]
>  
> Das ab dem Integral ist denke ich das Restglied, welches
> mich für die Aufgabe nicht weiter interessieren braucht?!
>  
> Ich schlüssel nun mal die Summe auf.
>  
> Für k=0 muss [mm]\mid\alpha\mid=0,[/mm] also
> [mm]\mid\alpha\mid=\sum_i^n\alpha_i=0\Rightarrow \alpha=(0,0)[/mm]
>  
> Es gibt also nur eine Möglichkeit für [mm]\alpha[/mm] und die innere
> Summe hat nur diesen einen Summanden:
>  
> [mm]\frac{1}{1}D^{(0,0)}f((\pi,\frac{\pi}{2}))((x_1,x_2)-(\pi,\frac{\pi}{2}))[/mm]
>  
> Die 0te Ableitung ändert ja erstmal nichts, also hat man
>  [mm]f((\pi,\frac{\pi}{2}))((x_1,x_2)-(\pi,\frac{\pi}{2}))[/mm]
>  


Das stimmt nicht ganz:

[mm]f(\pi,\frac{\pi}{2})\left(x_{1}-\pi\right)^{\blue{0}}\left(x_{1}-\bruch{\pi}{2}\right)^{\blue{0}}=f(\pi,\frac{\pi}{2})[/mm]


> [mm]=(\pi^2*\frac{\pi}{2}+sin(\pi-\frac{\pi}{2}))*((x_1,x_2)-(\pi,\frac{\pi}{2}))[/mm]
>  [mm]=\frac{\pi^3+2}{2}*(x_1-\pi,x_2-\frac{\pi}{2})[/mm]
>  
> wobei mir dieser Schritt eigentlich nicht so ganz klar
> ist.. ich verstehe das [mm]D^{(0,0)}f(..)[/mm] nicht.


[mm]D^{\left(0,0\right)}f\left(\pi,\bruch{\pi}{2}\right)=\bruch{\partial^{0+0} f}{\partial x_{1}^{0}\partial x_{2}^{0}}\left|_{\left(\pi,\bruch{\pi}{2}\right)}=f(\pi,\frac{\pi}{2})[/mm]


>  
> Ich kenne
>  
> [mm]D^{\alpha}f=\partial_{x_1}^{\alpha_1}\dots\partial_{x_n}^{\alpha_n}f[/mm]
>  
> aber was ist ein solches [mm]\partial_{x_i}^{\alpha_i}[/mm] ?
>  Die [mm]\alpha_i-te[/mm] Ableitung nach der i-ten Variable?


Ja.

>  
> Falls ja, dann würde für n=2 [mm]D^{(\alpha_1,\alpha_2)}f[/mm] ein
> Produkt der verschiedenen Ableitungen sein, oder wie habe
> ich das zu verstehen?


Das ist etwas anders:

[mm]D^{\left(\alpha_{1},\alpha_{2}\right)}f\left(\pi,\bruch{\pi}{2}\right)=\bruch{\partial^{\alpha_{1}+\alpha_{2}} f}{\partial x_{1}^{\alpha_{1}}\partial x_{2}^{\alpha_{2}}}\left|_{\left(\pi,\bruch{\pi}{2}\right)}=\left(\bruch{\partial ^{\alpha_{1}}}{\partial x_{1}^{\alpha_{1}}}\left(\bruch{\partial ^{\alpha_{2}}}{\partial x_{2}^{\alpha_{2}}} f \right)\right)\left|_{\left(\pi,\bruch{\pi}{2}\right)}\right=\left(\bruch{\partial ^{\alpha_{2}}}{\partial x_{2}^{\alpha_{2}}}\left(\bruch{\partial ^{\alpha_{1}}}{\partial x_{1}^{\alpha_{1}}} f \right)\right)\left|_{\left(\pi,\bruch{\pi}{2}\right)}\right[/mm]

Zunächst wird f [mm]\alpha_{2}[/mm]-mal nach [mm]x_{2}[/mm] abgeleitet.
Und dann [mm]\alpha_{1}[/mm]-mal nach [mm]x_{1}[/mm] abgeleitet.
Dann werden an der Stelle [mm]\left(\pi, \bruch{\pi}{2}\right)[/mm] die Werte der entsprechenden partiellen Ableitungen ermittelt.


>
> Ist der Ansatz für die Entwicklung ansonsten richtig oder
> bin ich schon irgendwo auf dem Holzweg?
>  
> weitere Fragen könnten dann folgen  :)
>  
> Danke!


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]