www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationmehrfache Substitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - mehrfache Substitution
mehrfache Substitution < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mehrfache Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:40 Mo 07.10.2013
Autor: Manu3911

Aufgabe
Durch Substitution berechne man:

[mm] \integral (x^3+2x)*(\wurzel{x^2-1})\, [/mm] dx

Hallo,
erstmal vorweg: Das ist meine erste Frage hier, also seht es mir bitte nach, falls ich nicht gleich alles richtig gemacht hab, ich bin für jeden Verbesserungsvorschlag zu haben! (:

Also ich versteh nicht, wie ich das substituieren soll, ich hab zuerst [mm] (x^3+2x)=u [/mm] substituiert und dann [mm] \integral u*\wurzel{x^2-1}*\bruch{dz}{3x^2+2} [/mm] ausgerechnet.
Dann hab ich sozusagen "vorn vorn angefangen" und wieder aus der Ausgangsfunktion [mm] \wurzel{x^2-1}=z [/mm] substituiert und [mm] \integral (x^3+2x)*\wurzel{z}*\bruch{dz}{2x} [/mm] ausgerechnet.
Nun weiß ich nicht, ob man das so machen darf, aber in der Uni haben wir die Aufgabe nur angefangen und nicht zu Ende gebracht und haben das auch mit diesen zwei "einzelnen" substitutionen gemacht. Und dann weiß ich auch nicht, wie ich die Ergebnisse zusammenbringen soll, mit Addition oder Multiplikation?
Vielen Dank schonmal für eure Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
mehrfache Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Mo 07.10.2013
Autor: Richie1401

Hallo Manu und Willkommen auf den Seiten des Matheraums,

deine Substitution empfiehlt sich nicht - wie du sicherlich auch mitbekommen hast.
Besser ist hier wohl [mm] u=x^2-1 [/mm] zu substituieren - also genau das, was unter der Wurzel steht.

Dann noch den kleinen Kniff mit dem Integranden:
[mm] (x^3+2x)\sqrt{x^2-1}=x(x^2-1+3)\sqrt{x^2-1} [/mm]

Kommst du damit nun zum Ziel? Falls nicht - einfach noch einmal nachfragen.

Grüße

Bezug
                
Bezug
mehrfache Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:23 Mo 07.10.2013
Autor: Manu3911

Vielen Dank! Das hat mir wirklich geholfen, ich hab den "Kniff mit dem Integranden" einfach nicht gesehen!! :P

Ich hab jetzt also als Lösung:
[mm] \bruch{1}{5}*(x^2-1)^\bruch{3}{2}*(x^2+4) [/mm]

Bezug
                        
Bezug
mehrfache Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 13:58 Mo 07.10.2013
Autor: Diophant

Hallo,

> Vielen Dank! Das hat mir wirklich geholfen, ich hab den
> "Kniff mit dem Integranden" einfach nicht gesehen!! :P

>

> Ich hab jetzt also als Lösung:
> [mm]\bruch{1}{5}*(x^2-1)^\bruch{3}{2}*(x^2+4)[/mm]

Das ist so gut wie richtig. Kennst du diesen Witz:

Zwei Mathematiker in einer Bar: Einer sagt zum anderen, daß der Durchschnittsbürger nur wenig Ahnung von Mathematik habe. Der zweite ist damit nicht einverstanden und meint, daß doch ein gewisses Grundwissen vorhanden sei.
Als der erste mal kurz austreten muß, ruft der zweite die blonde Kellnerin, und meint, daß er sie in ein paar Minuten, wenn sein Freund zurück ist, etwas fragen wird, und sie möge doch bitte auf diese Frage mit 'ein Drittel x hoch drei' antworten.
Etwas unsicher bejaht die Kellnerin und wiederholt im Weggehen mehrmals: "Ein Drittel x hoch drei..."
Der Freund kommt zurück und der andere meint: "Ich werd Dir mal zeigen, daß die meisten Menschen doch was von Mathematik verstehen. Ich frag jetzt die blonde Kellnerin da, was das Integral von x zum Quadrat ist." Der zweite lacht bloß und ist einverstanden.
Also wird die Kellnerin gerufen und gefragt, was das Integral von x zum Quadrat sei. Diese antwortet: "Ein Drittel x hoch drei."
Und im Weggehen dreht sie sich nochmal um und meint: "Plus c."


Er hat etwas mit deinem Fehler zu tun. :-)


Gruß, Diophant

Bezug
                                
Bezug
mehrfache Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:00 Mo 07.10.2013
Autor: Manu3911

Hallo,
also den Witz kannte ich noch nicht!
Aber vermutlich willst du mir damit sagen, dass an meinem unbestimmten Integral hinten die Integrationskonstante, also +c fehlt, oder? ;)

Bezug
                                        
Bezug
mehrfache Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:25 Mo 07.10.2013
Autor: Diophant

Hallo,

> Hallo,
> also den Witz kannte ich noch nicht!
> Aber vermutlich willst du mir damit sagen, dass an meinem
> unbestimmten Integral hinten die Integrationskonstante,
> also +c fehlt, oder? ;)

Jep. [ok]

Und: der Witz ist ein Klassiker! :-)

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]