www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikmikrokanonische Zustandssumme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "HochschulPhysik" - mikrokanonische Zustandssumme
mikrokanonische Zustandssumme < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mikrokanonische Zustandssumme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 Mi 07.01.2015
Autor: Paivren

Hallo Leute,


ich werde heute eine kleine Nachtschicht einlegen, weil ich eine Aufgabe lösen will, von deren Thema ich überhaupt keine Ahnung habe.


Ich soll über die mikrokanonische Zustandssumme die freie Helmholtz-Energie von N nicht miteinander wechselwirkenden (edit: klassischen) harmonischen Oszillatoren in einer Dimension berechnen.

Ich weiß weder, was die freie Helmholtz-Energie, noch die mikrokanonische Zustandssumme ist, da ich in meiner Vorlesung weit hinterherhänge.


Hat jemand eine gute Quelle, mit der ich die Aufgabe in einer Nacht lösen kann^^?



Gruß

Paivren

        
Bezug
mikrokanonische Zustandssumme: Antwort
Status: (Antwort) fertig Status 
Datum: 22:25 Mi 07.01.2015
Autor: andyv

Hallo,

die Begrifflichkeiten zumindest kannst du in jedem Lehrbuch der statistischen Physik nachlesen.

In jedem Fall wirst du das Eigenwertproblem lösen müssen. Du erhälst dann die Energieeigenwerte [mm] $E_\alpha$ [/mm] und die mikrokanonische Zustandssumme ist die Summe von [mm] $\delta(E-E_\alpha)$ [/mm] über alle Quantenzustände [mm] $\alpha$. [/mm] (Um die Summe auszuführen ist die Sattelpunktsmethode nützlich.)
Die Freie Energie F kann man einfach über die kanonische Zustandssumme [mm] $Z=\sum_\alpha \exp\frac{-E_\alpha}{T}$ [/mm] bestimmen: [mm] $F=-T\ln [/mm] Z$.

Liebe Grüße

Bezug
                
Bezug
mikrokanonische Zustandssumme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:44 Mi 07.01.2015
Autor: Paivren

Hey, danke erst mal für Deine Antwort.

In Lehrbüchern wird an der jeweiligen Stelle aber eine Unmenge an Wissen vorausgesetzt, das ich noch nicht habe, und mir an dieser Stelle auch nicht aneignen kann.

Ich habe vergessen, zu sagen, dass die Oszillatoren klassisch zu betrachten sind.


Wikipedia zur Zustandssumme:
[]Mikrokanonische Zustandssumme

Muss ich jetzt dieses Integral berechnen?
[mm] z_{m}(U,V,N)= \integral_{U-\Delta U \le H(p,q,N,V)\le U}^{b}{\bruch{d^{3N}pd^{3N}q}{h^{3N}N!}} [/mm]

im klassischen Fall kann der Oszillator ja kontinuierliche Energien annehmen.
Die Potentiale sind V(x)= [mm] \bruch{1}{2}m \omega^{2} x^{2} [/mm]

Aber was soll ich jetzt mit dem Integral machen?!
Was ist überhaupt h?

Gruß

Bezug
                        
Bezug
mikrokanonische Zustandssumme: Antwort
Status: (Antwort) fertig Status 
Datum: 00:13 Do 08.01.2015
Autor: andyv

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

$\Delta U$ ist im Vergleich zu U klein, also ist $\Omega(E)=\frac{1}{h^N N!}\int d^Nx \int d^Np \delta\left(E-\frac{<p|p>}{2m}-V(x)}\right)$, wobei ich mit $<\cdot|\cdot>$ das kanonische SKP im $\mathbb{R}^N$ bezeichne

h ist die Plancksche Konstante.

Liebe Grüße

Bezug
                                
Bezug
mikrokanonische Zustandssumme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:32 Do 08.01.2015
Autor: Paivren

Oh weh, ich glaube, ich habe so gar nicht die nötigen Kenntnisse dafür :(
Das passiert, wenn man zu lange nicht mehr am Ball geblieben ist.


Was ist das für ein [mm] \Omega [/mm] (E) und wie geht es aus meinem Integral hervor?


Bezug
                                        
Bezug
mikrokanonische Zustandssumme: Antwort
Status: (Antwort) fertig Status 
Datum: 00:49 Do 08.01.2015
Autor: andyv

[mm] $\Omega(E)$ [/mm] ist die mikrokanonische Zustandssumme, es ist die Ableitung von [mm] $z_m$, [/mm] d.h. [mm] $\Omega(E)=z_m'(E)$. [/mm] Beachte hier, dass die Ableitung der Heaviside Distribution die Delta-Distribution ist und ferner, dass für große N und kleine [mm] $\Delta [/mm] U$, das Integral von 0 bis [mm] $U-\Delta [/mm] U$ nichts beiträgt.

Liebe Grüße

Bezug
                                                
Bezug
mikrokanonische Zustandssumme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:02 Do 08.01.2015
Autor: Paivren

In dem Wikipedia-Artikel ist von zwei unterschiedlichen Definitionen der Zustandssumme die Rede.

Mein Integral, das ich oben gepostet habe, beinhalteet doch gar keine Heaviside-Funktion!

Bezug
                                                        
Bezug
mikrokanonische Zustandssumme: Antwort
Status: (Antwort) fertig Status 
Datum: 01:22 Do 08.01.2015
Autor: andyv

Wenn du de Integrationsbereich auf [mm] $\mathbb{R}^N$ [/mm] ausdehnst, kriegst du 2 Heavise-Funktionen rein, eine davon kannst du aber wie bereits erwähnt für große N und kleine [mm] $\Delta [/mm] U$ vergessen.

Liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]