www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1min
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis des R1" - min
min < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

min: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 So 28.10.2007
Autor: Phecda

hi
kann mir jmd erklären was

e := min {1, [mm] \bruch{c-x^2}{2x+1} [/mm] }
heißt? ich weiß nicht was die schreibweise bedeutet
klar min ist das minimum einer menge mit infimumeigenschaft

danke

        
Bezug
min: vergleichen
Status: (Antwort) fertig Status 
Datum: 14:36 So 28.10.2007
Autor: Loddar

Hallo Phecda!


Für bestimmte Werte von $c_$ und $x_$ kannst Du den Term [mm] $\bruch{c-x^2}{2x+1}$ [/mm] berechnen. Diesen vergleichst Du nun mit $1_$ und wählst von diesen beiden Werten den kleineren.

Wenn Du das nun für alle [mm] $c,x\in\IR$ [/mm] durchführst, erhältst Du das $e_$ ...


Gruß
Loddar


Bezug
                
Bezug
min: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 So 28.10.2007
Autor: Phecda

ok super
ich bin beim existenssatz der wurzel:
für jedes c [mm] \in \IR [/mm] mit c [mm] \ge [/mm] 0 gibt es genau ein x [mm] \in \IR [/mm] mit x [mm] \ge [/mm] 0, so dass [mm] x^2=c [/mm] ist.

Nun schreiben die im beweis
wäre nämlich [mm] x^2 [/mm] < c, so folgte (x + [mm] e)^2 \le [/mm] c, wenn wir für e > 0 die Zahl e := min {1, [mm] \bruch{c-x^2}{2x+1} [/mm] }
wählen, denn wegen [mm] e^2 \le [/mm] e und x [mm] \ge [/mm] 0 bekämen wir

[mm] (x+e)^2=x^2+2xe+e^2 \le x^2+2xe+e [/mm] = [mm] x^2+e(2x+1)\le [/mm] c

Ok vllt ist das ausm kontext gerissen, aber vllt kann jmd was mit anfangen...
nun meine erste frage ist warum denn [mm] (x+e)^2 \le [/mm] c mit dem definierten e := min {..} gilt?

und die zweite e > 0

warum gilt dann [mm] e^2 \le [/mm] e?

Ich hoffe dass jmd was verstanden hat.. sitz schon ewig an dem Beweis rum :(

mfg

Bezug
                        
Bezug
min: Antwort
Status: (Antwort) fertig Status 
Datum: 10:07 Mo 29.10.2007
Autor: M.Rex

Hallo

> ok super
> ich bin beim existenssatz der wurzel:
>  für jedes c [mm]\in \IR[/mm] mit c [mm]\ge[/mm] 0 gibt es genau ein x [mm]\in \IR[/mm]
> mit x [mm]\ge[/mm] 0, so dass [mm]x^2=c[/mm] ist.
>  
> Nun schreiben die im beweis
>  wäre nämlich [mm]x^2[/mm] < c, so folgte (x + [mm]e)^2 \le[/mm] c, wenn wir
> für e > 0 die Zahl e := min (1, [mm]\bruch{c-x^2}{2x+1}[/mm] )
>  wählen, denn wegen [mm]e^2 \le[/mm] e und x [mm]\ge[/mm] 0 bekämen wir
>  
> [mm](x+e)^2=x^2+2xe+e^2 \le x^2+2xe+e[/mm] = [mm]x^2+e(2x+1)\le[/mm] c
>  
> Ok vllt ist das ausm kontext gerissen, aber vllt kann jmd
> was mit anfangen...
>  nun meine erste frage ist warum denn [mm](x+e)^2 \le[/mm] c mit dem
> definierten e := min {..} gilt?

Setze dazu mmal ein.

(x+e)²

Dann mach eine Fallunterscheidung:
1: e=1
Dann: (x+e)²=(x+1)²=x²+2x+1=...

2: [mm] e=\bruch{c-x²}{2x+1}<1 [/mm]
Dann: [mm] (x+e)²=(x+\bruch{c-x²}{2x+1})²=(\bruch{(2x²+x)+(c-x²)}{2x+1})²=(\bruch{x²+x+c}{2x-1})²=... [/mm]

und jetzt müsstest du mal schauen, wie c jetzt definiert ist, und dann mal weiterrechnen

>  
> und die zweite e > 0
>  
> warum gilt dann [mm]e^2 \le[/mm] e?

Weil nach der Definition von e gilt [mm] e\le1 [/mm]

>  
> Ich hoffe dass jmd was verstanden hat.. sitz schon ewig an
> dem Beweis rum :(
>  
> mfg

Marius

Bezug
                        
Bezug
min: Einfacherer Weg
Status: (Antwort) fertig Status 
Datum: 11:17 Mo 29.10.2007
Autor: rainerS

Hallo Phecda,

es geht sogar einfacher, als Marius vorgerechnet hat; eigentlich steht nämlich Alles schon da.

> Nun schreiben die im beweis
>  wäre nämlich [mm]x^2[/mm] < c, so folgte [mm](x + e)^2 \le c[/mm], wenn wir
> für e > 0 die Zahl [mm]e := min \{1, \bruch{c-x^2}{2x+1} \}[/mm]
>  wählen, denn wegen [mm]e^2 \le[/mm] e und x [mm]\ge[/mm] 0 bekämen wir
>  
> [mm](x+e)^2=x^2+2xe+e^2 \le x^2+2xe+e[/mm] = [mm]x^2+e(2x+1)\le[/mm] c
>  
> Ok vllt ist das ausm kontext gerissen, aber vllt kann jmd
> was mit anfangen...
>  nun meine erste frage ist warum denn [mm](x+e)^2 \le[/mm] c mit dem
> definierten e := min {..} gilt?

Das steht eigentlich da, schau dir die Ungleichungskette an:

[mm](x+e)^2=x^2+2xe+e^2 \mathop{\le}\limits_{\overbrace{e^2\le e}} x^2+2xe+e = x^2+e(2x+1)\mathop{\le}\limits_{\overbrace{e\le \bruch{c-x^2}{2x+1}}} x^2 + \bruch{c-x^2}{2x+1}(2x+1) = c[/mm]


> und die zweite e > 0

Das wird angenommen.

> warum gilt dann [mm]e^2 \le[/mm] e?

Weil [mm]0>e\le1[/mm] ist. Laut Definition ist [mm]e := min \{1, \bruch{c-x^2}{2x+1} \}[/mm], und das heisst ja

[mm] e:= \begin{cases} 1 & \text{für $\displaystyle\bruch{c-x^2}{2x+1}\ge1$} \\ \displaystyle\bruch{c-x^2}{2x+1}& \text{für $\displaystyle\bruch{c-x^2}{2x+1}<1$}\end{cases}[/mm]


Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]