www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1min(x,y); max(x,y)
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - min(x,y); max(x,y)
min(x,y); max(x,y) < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

min(x,y); max(x,y): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 Sa 12.02.2011
Autor: kushkush

Aufgabe
Für $x,y [mm] \in \IR$, [/mm] zeige:

[mm] a)$max(x,y)=\frac{x+y+|x-y|}{2}$ [/mm]
[mm] b)$min(x,y)=\frac{x+y-|x-y|}{2}$ [/mm]


Hallo,

a) [mm] $x\ge [/mm] y$ [mm] $\forall [/mm] x,y [mm] \in \IR$ $\Rightarrow [/mm] |x-y|=x-y$
[mm] $\Rightarrow [/mm] max(x,y)=x$

$x< y$ [mm] $\forall [/mm] x,y [mm] \in \IR$ $\Rightarrow [/mm] |x-y|=y-x$
[mm] $\Rightarrow [/mm] max(x,y)=y$


[mm] b)$x\ge [/mm] y$ [mm] $\forall [/mm] x,y [mm] \in \IR$ $\Rightarrow [/mm] |x-y|=x-y$
[mm] $\Rightarrow [/mm] min(x,y)=y$

$x< y$ [mm] $\forall [/mm] x,y [mm] \in \IR$ $\Rightarrow [/mm] |x-y|=y-x$
[mm] $\Rightarrow [/mm] min(x,y)=x$

Stimmt das so ?


Ich habe diese Frage in keinem anderen Forum gestellt.


Danke und Gruss

kushkush

        
Bezug
min(x,y); max(x,y): Antwort
Status: (Antwort) fertig Status 
Datum: 16:21 Sa 12.02.2011
Autor: Gonozal_IX

Huhu,

deine Idee ist richtig.
Ich würd den Zwischenschritt noch einsetzen, wo du die Definition einsetzt und umformst.
Ansonsten stimmts.

MFG,
Gono.

Bezug
                
Bezug
min(x,y); max(x,y): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 Sa 12.02.2011
Autor: kushkush

Hallo Gonozal_IX,

< Zwischenschritt

a)
$ [mm] x\ge [/mm] y $ $ [mm] \forall [/mm] x,y [mm] \in \IR [/mm] $ $ [mm] \Rightarrow [/mm] |x-y|=x-y $
$ [mm] \Rightarrow max(x,y)=\frac{x+y+x-y}{2}=x [/mm] $

$x<y$ $ [mm] \forall [/mm] x,y [mm] \in \IR [/mm] $ $ [mm] \Rightarrow [/mm] |x-y|=y-x $
$ [mm] \Rightarrow max(x,y)=\frac{x+y+y-x}{2}=y [/mm] $

b)
$ [mm] x\ge [/mm] y $ $ [mm] \forall [/mm] x,y [mm] \in \IR [/mm] $ $ [mm] \Rightarrow [/mm] |x-y|=x-y $
$ [mm] \Rightarrow min(x,y)=\frac{x+y-x+y}{2}=y [/mm] $

$x<y$ $ [mm] \forall [/mm] x,y [mm] \in \IR [/mm] $ $ [mm] \Rightarrow [/mm] |x-y|=y-x $
$ [mm] \Rightarrow min(x,y)=\frac{x+y-y+x}{2}=x [/mm] $


so?



Danke


Gruss

kushkush

Bezug
                        
Bezug
min(x,y); max(x,y): Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Sa 12.02.2011
Autor: MaTEEler

Hallo,

> Hallo Gonozal_IX,
>  
> < Zwischenschritt
>  
> a)
>  [mm]x\ge y[/mm] [mm]\forall x,y \in \IR[/mm] [mm]\Rightarrow |x-y|=x-y[/mm]
>  
> [mm]\Rightarrow max(x,y)=\frac{x+y+x-y}{2}=x[/mm]
>  
> [mm]x
>  [mm]\Rightarrow max(x,y)=\frac{x+y+y-x}{2}=y[/mm]
>  
> b)
>  [mm]x\ge y[/mm] [mm]\forall x,y \in \IR[/mm] [mm]\Rightarrow |x-y|=x-y[/mm]
>  
> [mm]\Rightarrow min(x,y)=\frac{x+y-x+y}{2}=y[/mm]
>  
> [mm]x
>  [mm]\Rightarrow min(x,y)=\frac{x+y-y+x}{2}=x[/mm]
>  
>
> so?
>  


ja, prima!

>
>
> Danke
>  
>
> Gruss
>  
> kushkush


Bezug
        
Bezug
min(x,y); max(x,y): Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Sa 12.02.2011
Autor: Al-Chwarizmi

Hallo kushkush,

ich würde dir sehr empfehlen, für einen derartigen Beweis
nicht nur Gleichungen hinzuschreiben, sondern vor allem Gedanken !

(dazu sind auch ein paar verständliche Sätze erforderlich)


LG


Bezug
                
Bezug
min(x,y); max(x,y): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 Sa 12.02.2011
Autor: kushkush

Hallo MaTEEler und Al-Chwarizmi,



< super

Danke

< Sätze

Wegen den Beträgen oder wegen dem min max? Was hättest du denn hingeschrieben?


Danke.


Gruss

kushkush

Bezug
                        
Bezug
min(x,y); max(x,y): (ergänzt)
Status: (Antwort) fertig Status 
Datum: 18:06 Sa 12.02.2011
Autor: Al-Chwarizmi


> Wegen den Beträgen oder wegen dem min max? Was hättest du
> denn hingeschrieben?

Na ja, halt etwa das:


Falls [mm] x\ge{y} [/mm] ist, so liefert die Formel:

  $\ max(x,y)\ =\ .....\ =\  .....\ = \ x$   , was im Fall [mm] x\ge{y} [/mm] offensichtlich richtig ist

etc.


Der Klarheit der Argumentation zuliebe wäre es bestimmt
noch nützlich, für die beiden Terme (die angeblich das
Maximum bzw. das Minimum liefern sollen) vorerst
besondere Bezeichnungen einzuführen, etwa:

    $\ [mm] T_1(x,y):=\ \frac{x+y+|x-y|}{2}$ [/mm]      $\ [mm] T_2(x,y):=\ \frac{x+y-|x-y|}{2}$ [/mm]

Der Beweis besteht dann darin, zu zeigen, dass tatsächlich
für beliebige Werte [mm] x,y\in\IR [/mm]  die Gleichungen [mm] T_1(x,y)=max(x,y) [/mm]
sowie  [mm] T_2(x,y)=min(x,y) [/mm]  gelten.


Es braucht nicht viel, aber das Wenige ist nach meiner Ansicht
unerlässlich !


LG    Al-Chw.

Bezug
                                
Bezug
min(x,y); max(x,y): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:11 Sa 12.02.2011
Autor: kushkush

OK, Danke für den Hinweis Al-Chwarizmi!



Gruss

kushkush

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]