www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraische Geometrieminimale Auflösung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebraische Geometrie" - minimale Auflösung
minimale Auflösung < Algebraische Geometrie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

minimale Auflösung: Idee
Status: (Frage) überfällig Status 
Datum: 22:53 Mo 30.09.2013
Autor: flipflop

Aufgabe
Sei X eine torische Fläche, die genau einen singulären Punkt p hat. Sei [mm]\varphi \colon Y \rightarrow X[/mm] eine Auflösung von Singularitäten mit der Eigenschaft, dass [mm]E \cdot E \neq -1[/mm] für jede irreduzible Komponente E von [mm]\varphi^{-1} (p) [/mm] gilt. Zeige, dass  [mm] \varphi [/mm] eine minimale Auflösung ist.
Sei dazu [mm]\psi \colon Z \rightarrow X[/mm] eine weitere Auslösung von Singularitäten. Setze [mm]S = Z \times_X Y [/mm] und sei R eine Auflösung von S. Dann haben wir ein kommutatives Diagramm von Morphismen
[mm] \begin{matrix} R & \stackrel{\alpha}{\rightarrow} &Y\\ \downarrow \beta & & \downarrow \varphi\\ Z & \stackrel{\psi}{\rightarrow} & X \end{matrix} [/mm]

(a) Es reicht zu zeigen, dass [mm]\beta[/mm] ein Isomorphismus ist.
(b) Falls nicht, wende Hartshorne V.5.3 an um zu zeigen, dass [mm]\beta[/mm] als Sequenz von Aufblasungen von Punkten faktorisiert. Also enthält R  Kurven L in der exzeptionellen Faser über p mit [mm]L\cdot L =-1[/mm].
(c) Sei L eine irreduzible Kurve auf R mit [mm]L \cdot L =-1[/mm]. Zeige, dass [mm]E\cdot E =-1[/mm] für [mm]E = \alpha(L)[/mm] gilt.
(d) Folgere, dass [mm]\beta[/mm] ein Isomorphismus ist.

Ich versuche gerade einige Übungsaufgaben aus dem Buch Toric varieties von Cox, Little und Schenck zu lösen, darunter auch die Aufgabe 10.4.7, deren Aufgabentext ich hier abgetippt habe.
Die Aufgabenteile (a) (wenn [mm]\beta[/mm] ein Isomorphismus ist, dann gilt [mm]\psi = \varphi \circ (\alpha \circ \beta^{-1})[/mm], d.h. [mm]\varphi[/mm] ist minimal) und (d) (dann hat man einen Widerspruch zur Voraussetzung, d.h. [mm]\beta[/mm] ist ein Iso) sind mir klar, aber mit den Aufgabenteilen (b) und (c) komme ich nicht weiter. Ich komme auch nicht darauf, wie ich V.5.3 von Hartshorne anwenden soll.
Es wäre toll, wenn mit jemand weiterhelfen könnte!

Als Info:

Theorem V.5.3, Hartshorne:
Sei [mm] f\colon X' \rightarrow X [/mm] ein birationaler Morphismus von (projektiven, nicht-singulären) Flächen. Sei p ein fundamentaler Punkt von [mm]f^{-1}[/mm]. Dann faktorisiert f durch die monoidale Transformation [mm]\pi \colon \widetilde{X} \rightarrow X[/mm] mit Zentrum p.

Definition minimale Auflösung:
Eine Auflösung von Singularitäten [mm]\varphi \colon Y \rightarrow X[/mm] heißt minimal, falls für jede weitere Auflösung [mm]\psi \colon Z \rightarrow X[/mm] ein Morphismus [mm]f \colon Z \rightarrow Y[/mm] existiert mit [mm]\varphi \circ f = \psi[/mm].


        
Bezug
minimale Auflösung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Di 08.10.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]