minimaler Teilkörper < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:45 Mi 26.04.2006 | Autor: | mushroom |
Aufgabe | Sei [mm] $\mathbb [/mm] Q [mm] \subseteq [/mm] K [mm] \subseteq \mathbb [/mm] C$ ein Körper und $F [mm] \in \mathrm{End}(K^6)$ [/mm] gegeben durch $x [mm] \mapsto [/mm] Ax$ mit
A:= [mm] \begin{pmatrix}
0&1&0&0&0&0 \\ 2&0&0&0&0&0 \\ 0&0&0&1&0&0 \\ 0&0&-1&0&0&0 \\ 0&0&0&0&29&12 \\ 0&0&0&0&13&30
\end{pmatrix}
[/mm]
Entscheiden Sie in den Fällen [mm] $K=\mathbb [/mm] Q$, $K = [mm] \mathbb [/mm] R$ und [mm] $K=\mathbb [/mm] C$ ob $F$ diagonalisierbar ist und geben Sie ggfs. eine diagonale Darstellungsmatrix von $F$ an. Bestimmen Sie den minimalen Teilkörper [mm] $K_{min}$ [/mm] von [mm] $\mathbb [/mm] C$ der [mm] $\mathbb [/mm] Q$ enthält, so daß $F$ diagonalisierbar ist. Minimal heißt hierbei, daß kein echter Teilkörper diese Eigenschaft besitzen soll. |
Hallo,
ich habe zu der obigen Aufgabe eine Frage. Zunächst einmal habe ich die Eigenwerte (über [mm] $\mathbb [/mm] C$: [mm] $17,42,\sqrt{2},-\sqrt{2},i,-i$) [/mm] berechnet und die diagonale Dartsellungsmatrix herausgefunden. Nun soll der minimale Teilkörper bestimmt werden. Leider weiß ich nicht wie ich da ran gehen soll. Ich habe mir überlegt, daß dieser minimale Teilkörper die Eigenwerte als Elemente, sowie deren Inverse und das neutrale Element.
Jedoch komme ich beim Überprüfen der Wohldefiniertheit schon zu dem Problem, daß wenn ich zwei beliebige von dieses Elementen nehme (z.B. 17 und 42) deren Summe nicht mehr im Köper liegt.
Ist denn dieser Ansatz überhaupt in Ordnung oder muß ich das ganz anders in Angriff nehmen?
Gruß
Markus
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:15 Mi 26.04.2006 | Autor: | felixf |
Hallo!
> Sei [mm]\mathbb Q \subseteq K \subseteq \mathbb C[/mm] ein Körper
> und [mm]F \in \mathrm{End}(K^6)[/mm] gegeben durch [mm]x \mapsto Ax[/mm] mit
> A:= [mm]\begin{pmatrix}
0&1&0&0&0&0 \\ 2&0&0&0&0&0 \\ 0&0&0&1&0&0 \\ 0&0&-1&0&0&0 \\ 0&0&0&0&29&12 \\ 0&0&0&0&13&30
\end{pmatrix}[/mm]
>
> Entscheiden Sie in den Fällen [mm]K=\mathbb Q[/mm], [mm]K = \mathbb R[/mm]
> und [mm]K=\mathbb C[/mm] ob [mm]F[/mm] diagonalisierbar ist und geben Sie
> ggfs. eine diagonale Darstellungsmatrix von [mm]F[/mm] an. Bestimmen
> Sie den minimalen Teilkörper [mm]K_{min}[/mm] von [mm]\mathbb C[/mm] der
> [mm]\mathbb Q[/mm] enthält, so daß [mm]F[/mm] diagonalisierbar ist. Minimal
> heißt hierbei, daß kein echter Teilkörper diese Eigenschaft
> besitzen soll.
> Hallo,
>
> ich habe zu der obigen Aufgabe eine Frage. Zunächst einmal
> habe ich die Eigenwerte (über [mm]\mathbb C[/mm]:
> [mm]17,42,\sqrt{2},-\sqrt{2},i,-i[/mm]) berechnet und die diagonale
> Dartsellungsmatrix herausgefunden. Nun soll der minimale
> Teilkörper bestimmt werden. Leider weiß ich nicht wie ich
> da ran gehen soll. Ich habe mir überlegt, daß dieser
> minimale Teilkörper die Eigenwerte als Elemente, sowie
> deren Inverse und das neutrale Element.
Das sind viel zu viele. Wenn du einen Teilkoerper hast, der die Eigenwerte enthaelt, dann ist die Matrix ueber diesem bereits diagonalisierbar (ueberleg dir mal warum). Und wenn die Matrix ueber einem Teilkoerper diagonalisierbar ist, muss dieser die Eigenwerte enthalten. Also ist der minimale Teilkoerper gerade [mm] $\IQ$ [/mm] adjungiert alle Eigenwerte.
> Jedoch komme ich beim Überprüfen der Wohldefiniertheit
> schon zu dem Problem, daß wenn ich zwei beliebige von
> dieses Elementen nehme (z.B. 17 und 42) deren Summe nicht
> mehr im Köper liegt.
Weisst du, wass [mm] $\IQ(\alpha_1, \dots, \alpha_n)$ [/mm] ist fuer [mm] $\alpha_1, \dots, \alpha_n \in \IC$? [/mm] Oder in Worten, die von [mm] $\alpha_1, \dots, \alpha_n \in \IC$ [/mm] erzeugte Koerpererweiterung von [mm] $\IQ$? [/mm] Mit von Hand einzelnde Elemente hinzufuegen kommst du nicht weit...
> Ist denn dieser Ansatz überhaupt in Ordnung oder muß ich
> das ganz anders in Angriff nehmen?
Ja, du machst es dir zu kompliziert. Du musst den erzeugten Koerper nicht ganz so explizit angeben wie du es anscheinend denkst.
LG Felix
|
|
|
|
|
Hallo Felix,
tut mir leid, aber irgendwie verstehe ich gar nichts. Ich weiß auch nicht was eine Körpererweiterung ist. Könntest du das vielleicht noch etwas ausführlicher erklären?
Danke
Markus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:20 Fr 28.04.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|