mögliche Minimalpolynome < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:28 Mo 01.10.2012 | Autor: | triad |
Aufgabe | Sei [mm] F\in End_{\IR}(\IR^4) [/mm] und [mm] \chi_F(X)=(X-2)^4. [/mm] Die Dimension des Eigenraums zum Eigenwert 2 ist 3. Bestimme alle möglichen Minimalpolynome von F. Warum gibt es keine weiteren Möglichkeiten? |
Hallo.
Allgemein gilt doch bei einem char. Polynom wie [mm] \chi_F(X)=(X-2)^4, [/mm] dass das Minimalpolynom nur so aussehen kann: [mm] m_F(X)=(X-2)^k [/mm] mit [mm] k\in\{1,2,3,4\}. [/mm] Jetzt kommt noch die Einschränkung [mm] dim_{\IR} [/mm] V(F,2)=3 hinzu, also die Dimension des Eigenraums zum Eigenwert 2 ist 3. Heisst das, dass k genau 3 ist oder [mm] k=\{1,2,3\} [/mm] oder was bedeutet das für das Minimalpolynom?
Vielen Dank
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:34 Mo 01.10.2012 | Autor: | felixf |
Moin!
> Sei [mm]F\in End_{\IR}(\IR^4)[/mm] und [mm]\chi_F(X)=(X-2)^4.[/mm] Die
> Dimension des Eigenraums zum Eigenwert 2 ist 3. Bestimme
> alle möglichen Minimalpolynome von F. Warum gibt es keine
> weiteren Möglichkeiten?
>
> Allgemein gilt doch bei einem char. Polynom wie
> [mm]\chi_F(X)=(X-2)^4,[/mm] dass das Minimalpolynom nur so aussehen
> kann: [mm]m_F(X)=(X-2)^k[/mm] mit [mm]k\in\{1,2,3,4\}.[/mm] Jetzt kommt noch
> die Einschränkung [mm]dim_{\IR}[/mm] V(F,2)=3 hinzu, also die
> Dimension des Eigenraums zum Eigenwert 2 ist 3. Heisst das,
> dass k genau 3 ist oder [mm]k=\{1,2,3\}[/mm] oder was bedeutet das
> für das Minimalpolynom?
Kennst du die Jordansche Normalform? Die Aussage ueber die Dimension sagt dir, wie die Jordansche Normalform der Matrix aussehen muss, und daraus kannst du direkt das Minimalpolynom ablesen.
Wenn dir das nichts sagt:
1) Wenn $k = 1$ waere, muesste der Eigenraum vierdimensional sein (warum?). Also geht das nicht.
2) Der Kern von $F - 2 [mm] \cdot [/mm] id$ ist dreidimensional. Wie kann/muss der Kern von $(F - 2 [mm] \cdot id)^2$ [/mm] aussehen?
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:54 Mo 01.10.2012 | Autor: | triad |
Die Dimension des Eigenraums zum Eigenwert 2 ist 3 bedeutet, dass die Jordan-Form
[mm] \pmat{2&0&0&0\\1&2&0&0\\0&0&2&0\\0&0&0&2} [/mm] ist. Das größte Kästchen ist 2, deswegen ist das Minimalpolynom [mm] m_F(x)=(x-2)^2.
[/mm]
|
|
|
|
|
Hallo triad,
> Die Dimension des Eigenraums zum Eigenwert 2 ist 3
> bedeutet, dass die Jordan-Form
> [mm]\pmat{2&0&0&0\\1&2&0&0\\0&0&2&0\\0&0&0&2}[/mm] ist. Das
> größte Kästchen ist 2, deswegen ist das Minimalpolynom
> [mm]m_F(x)=(x-2)^2.[/mm]
Gruss
MathePower
|
|
|
|