www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenmonoton steigende Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - monoton steigende Folge
monoton steigende Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

monoton steigende Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:33 Fr 14.11.2008
Autor: Reticella

Aufgabe
[mm] a_{n}=(1+\bruch{1}{n})^{n}, n\ge1 [/mm]

zu zeigen: [mm] a_{n} [/mm] ist streng monoton steigend

Hallo,

ich habe nun so angefangen:

zu zeigen ist [mm] a_{n+1}>a_{n}, [/mm] also [mm] (1+\bruch{1}{n+1})^{n+1}>(1+\bruch{1}{n})^{n} [/mm]

nun habe ich versucht diese Ungleichung so oft umzuformen, bis sich mir ergibt warum sie richtig ist, bin leider aber nie zu einem schlüssigen ergebnis gekommen, da die Nenner nicht übereinstimmen und ich so nicht vereinfachen kann.

kann mir jemand einen Tipp geben??


vielen Dank im Vorraus Reticella


Ich habe diese Frage auf keiner anderen Website gestellt.

        
Bezug
monoton steigende Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 Fr 14.11.2008
Autor: XPatrickX

Hey,

zeige hier lieber [mm] \frac{a_n}{a_{n-1}}>1. [/mm] Das ist einfacher. Zwischendurch solltest du dann einmal die Bernoulli'sche Ungleichung anwenden.

Gruß Patrick

Bezug
                
Bezug
monoton steigende Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:36 Fr 14.11.2008
Autor: Reticella

Hallo,

ich habe also [mm] (1+\bruch{1}{n})^{n}\ge2 [/mm] (Beweis durch vollstänidge Induktion)

[mm] \Rightarrow\bruch{(1+\bruch{1}{n})^{n}}{1+1}\ge1 [/mm]

[mm] \Rightarrow\bruch{(1+\bruch{1}{n})^{n}}{(1+\bruch{1}{n-1})^{n-1}}\ge\bruch{(1+\bruch{1}{n})^{n}}{1+1}\ge1 [/mm]


[mm] \Rightarrow {(1+\bruch{1}{n})^{n}}\ge{(1+\bruch{1}{n-1})^{n-1}} [/mm]

leider bräuchte ich aber ein >. kann mir bitte noch einmal jemand helfen??

vielen Dank Reticella

Bezug
                        
Bezug
monoton steigende Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Fr 14.11.2008
Autor: abakus

Hallo,
du solltest den Hinweis mit  der Bernoullischen Ungleichung nicht ignorieren.
Gruß Abakus

Bezug
                                
Bezug
monoton steigende Folge: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:02 Fr 14.11.2008
Autor: Reticella

hallo,

hab ich doch auch oder?

z. B. von hier

[mm] \Rightarrow\bruch{(1+\bruch{1}{n})^{n}}{1+1}\ge1 [/mm]

nach hier

[mm] \Rightarrow\bruch{(1+\bruch{1}{n})^{n}}{(1+\bruch{1}{n-1})^{n-1}}\ge\bruch{(1+\bruch{1}{n})^{n}}{1+1}\ge1 [/mm]



Viele Grüße Reticella

Bezug
                                        
Bezug
monoton steigende Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:25 Sa 15.11.2008
Autor: Reticella

Hallo, habe mittlerweile das Problem gelöst, vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]