www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenmonoton wachsende Folge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - monoton wachsende Folge
monoton wachsende Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

monoton wachsende Folge: Ansatz
Status: (Frage) beantwortet Status 
Datum: 17:23 Mo 02.11.2015
Autor: Anmahi

Aufgabe
Sei x [mm] \in \IR [/mm] mit x>0. Zeigen Sie, dass dann auch [mm] \bruch{1}{x} \in \IR [/mm] ist, indem Sie eine beschränkte monoton wachsende Folge in [mm] \IQ [/mm] finden, die [mm] \bruch{1}{x} [/mm] als Grenzwert hat.

Ich hab keine Idee was ich da machen soll. Es wäre nett wenn mir jemand einen Ansatz zu dieser Aufgabe gibt.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
monoton wachsende Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:09 Mo 02.11.2015
Autor: schachuzipus

Hallo,

Doppelpost?

http://www.mathelounge.de/279884/beschrankt-monoton-wachsende-folge

Gruß

schachuzipus

Bezug
                
Bezug
monoton wachsende Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:38 Mo 02.11.2015
Autor: Anmahi

Die gleiche Frage auf der anderen Seite kam nicht von mir, aber ich hab mir die angeguckt und ich verstehe das trotzdem nicht. Wie kann man das Schlussfolgern:  | [mm] \bruch{1}{a_{n}} [/mm] - [mm] \bruch{1}{x}| [/mm] =  [mm] \bruch{| x - a_{n} |}{| a_{n} | |x|} [/mm]
und daraus: [mm] \bruch{1}{a_{n}} [/mm] ist eine beschränkte Folge und konvergiert deshalb gegen [mm] \bruch{1}{x} [/mm] ?



Bezug
        
Bezug
monoton wachsende Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:51 Mo 02.11.2015
Autor: Anmahi

Die gleiche Frage auf der anderen Seite kam nicht von mir, aber ich hab mir die angeguckt und ich verstehe das trotzdem nicht. Wie kann man das Schlussfolgern:  | [mm] \bruch{1}{a_{n}} [/mm] - [mm] \bruch{1}{x}| [/mm] =  [mm] \bruch{| x - a_{n} |}{| a_{n} | |x|} [/mm]
und daraus: [mm] \bruch{1}{a_{n}} [/mm] ist eine beschränkte Folge und konvergiert deshalb gegen [mm] \bruch{1}{x} [/mm] ?


Bezug
                
Bezug
monoton wachsende Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Mo 02.11.2015
Autor: leduart

bekannt ist [mm] |x-a_n| [/mm] konvergiert gegen ß
[mm] 1/x-1/a_n=(a_n-x_n)/(a_n*x [/mm]
[mm] a_n [/mm] und x sind beschränkt, wenn du noch die Betragsstriche setz steh da Zähler gen 0 Nenner >0 was folgt daraus?
Gruss leuart

Bezug
        
Bezug
monoton wachsende Folge: zugrundeliegende Definition ?
Status: (Antwort) fertig Status 
Datum: 20:08 Mo 02.11.2015
Autor: Al-Chwarizmi


> Sei x [mm]\in \IR[/mm] mit x>0. Zeigen Sie, dass dann auch
> [mm]\bruch{1}{x} \in \IR[/mm] ist, indem Sie eine beschränkte
> monoton wachsende Folge in [mm]\IQ[/mm] finden, die [mm]\bruch{1}{x}[/mm] als
> Grenzwert hat.


Guten Abend Anmahi

ich denke, dass es wichtig zu wissen wäre, auf welches
Vorwissen man sich bei dieser Aufgabe beziehen darf bzw. soll.

Nachdem die reellen Zahlen einmal (als Zahlkörper) eingeführt
sind, ist die Existenz des multiplikativen Inversen eigentlich
selbstverständlich. Möglicherweise seid ihr aber erst dabei,
die entsprechenden Gesetze zu etablieren.

Wichtig zu wissen wäre also, wie für euch die aktuelle Definition
für den Begriff    " x ist eine reelle Zahl "  genau aussieht.

LG ,   Al-Chwarizmi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]