www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGraphentheorien-dimensinale hypercubuse
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Graphentheorie" - n-dimensinale hypercubuse
n-dimensinale hypercubuse < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

n-dimensinale hypercubuse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:49 Di 15.05.2007
Autor: Frido22

Aufgabe
Für eine ganze Zahl n [mm] \ge [/mm] 1 ist der  n-dimensionale Hypercubus [mm] H_{n} [/mm] duch V [mm] H_{n} [/mm] = {0,1} [mm] x^{n} [/mm] und E [mm] H_{n} [/mm] = {{v,w} : [mm] \parallel [/mm] v-w [mm] \parallel [/mm] = 1} gegeben (zwei Ecken sind benachbart, wenn sie sich nur in einer Komponente unterscheiden). Zeigen Sie, dass jede Ecke Grad n hat. Zeigen Sie, dass |V [mm] H_{n} [/mm] | = [mm] 2^{n} [/mm] und |E [mm] H_{n} [/mm] | = n [mm] 2^{n-1} [/mm] gilt.

?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
n-dimensinale hypercubuse: Idee
Status: (Antwort) fertig Status 
Datum: 14:11 Di 15.05.2007
Autor: generation...x

Grad:
Ein Würfel ist symmetrisch, es genügt also, nur eine Ecke zu betrachten, oBdA den Nullpunkt.
Wieviele Kanten gehen vom Nullpunkt aus? Warum? Tipp: Wie lauten die Koordinaten der Punkte, die mit dem Nullpunkt direkt verbunden sind?

Anzahl der Ecken und Kanten:
Würde ich vollständige Induktion vorschlagen. Beginnend mit der Strecke (dim=1) sollte das nicht zu schwer sein. Von der Strecke über das Quadrat zum Würfel kannst du alle relevanten Mechanismen beobachten - musst nur noch verallgemeinern.

Bezug
                
Bezug
n-dimensinale hypercubuse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 Mi 23.05.2007
Autor: Frido22

hm, ich kann damit leider nicht soviel anfangen...:(

Bezug
                        
Bezug
n-dimensinale hypercubuse: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Mi 23.05.2007
Autor: wauwau

n-dimensionaler Einheitswürfel

jede V hat die Koordinaten [mm] (x_1,x_2,....,x_n) [/mm] mit [mm] x_i \in [/mm] {0,1} daher [mm] 2^n [/mm] Ecken

jeder dieser Ecken hat Grad n daher [mm] n*2^n [/mm] Kanten, die damit allerdings doppelt gezählt wurden (auf beiden Ecken der Kanten daher  [mm] \bruch{n2^n}{2}=n*2^{n-1} [/mm] Kanten

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]