www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehren-elementige Menge v. Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mengenlehre" - n-elementige Menge v. Mengen
n-elementige Menge v. Mengen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

n-elementige Menge v. Mengen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:48 Sa 09.11.2013
Autor: Leon8

Aufgabe
Es sei n [mm] \in \IN [/mm] und [mm] \ge [/mm] 4. Geben sie eine n-elementige Menge von Mengen {M1,..., Mn} so an, dass die beiden folgenden Eigenschaften gelten:

[mm] \bigcap_{i=1}^{n} [/mm] Mi= {0} und [mm] \bigcap_{i=1}^{n} [/mm] Mi= {0,1,..., n-2}

Vorwort: Das erste Konstrukt soll wieder heißen, dass alle Mengen die 0 haben. Beim zweiten Konstrukt bin ich mir net sicher. n soll ja gößer gleich 4 sein. für n-2 bedeutet es, dass ich min. 6 verschiendene Mengen brauche, da 6-2 nunmal 4 sind und die braucht man hier mindestens.

Mein Lösungsansatz:

M1={0}
M2={0,1}
M3={0,2}
M4={0,3}
M5={0,4}
M6={0,5,6}

Soweit die Mengen, wie geht es nu weiter?

Ich habe gedacht, dass man vielleicht die Mengen dann explizit aufschreibt  


        
Bezug
n-elementige Menge v. Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Sa 09.11.2013
Autor: angela.h.b.


> Es sei n [mm]\in \IN[/mm] und [mm]\ge[/mm] 4. Geben sie eine n-elementige
> Menge von Mengen {M1,..., Mn} so an, dass die beiden
> folgenden Eigenschaften gelten:

>

> [mm]\bigcap_{i=1}^{n}[/mm] Mi= {0} und [mm]\bigcap_{i=1}^{n}[/mm] Mi=
> {0,1,..., n-2}
> Vorwort: Das erste Konstrukt soll wieder heißen, dass
> alle Mengen die 0 haben. Beim zweiten Konstrukt bin ich mir
> net sicher.

Hallo,

Du sollst n Mengen [mm] M_1, M_2,...,M_n [/mm] nennen,
deren Schnitt nur die 0 enthält, und die zusammengeschüttet (=vereinigt) die (n-1)-elementige Menge [mm] \{0,1,2,...,n-3,n-2\} [/mm] ergeben.

Du solltest Dir mal klarmachen, daß Du diese Aufgabe exemplarisch für n=5 bereits gelöst hast.


n soll ja gößer gleich 4 sein. für n-2

> bedeutet es, dass ich min. 6 verschiendene Mengen brauche,
> da 6-2 nunmal 4 sind und die braucht man hier mindestens.

????

n ist irgendeine völlig beliebige, nicht näher benannte natürliche Zahl (größergleich 4).


>

> Mein Lösungsansatz:

>

> M1={0}
> M2={0,1}
> M3={0,2}
> M4={0,3}
> M5={0,4}
> M6={0,5,6}

Du möchtest es nochmal ganz konkret für n=6 lösen?
Kann man machen, solange man noch nicht richtig durchblickt, finde ich in diesen Fällen auch hilfreich und empfehle das.

Schauen wir für n=6 also Deine 6 Mengen an.
Der Durchschnitt ist die Menge [mm] \{0\}, [/mm] das ist schonmal gut.
Aber die Vereinigung? Oh Schreck! Das ist [mm] \{0,1,2,3,4,5,6\}. [/mm]

Was aber sollte die Vereinigung sein? [mm] \{0,1,...,6-2\}=\{1,2,3,4\}. [/mm]

Da mußt Du nochmal neu überlegen.

Mach's dann auch für n=7, n=20 und n=100.

Ich denke, danach bist Du bereit, die Aufgabe für allgemeines n zu lösen.

LG Angela

>

> Soweit die Mengen, wie geht es nu weiter?

>

> Ich habe gedacht, dass man vielleicht die Mengen dann
> explizit aufschreibt

>

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]