www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Sonstigesn! = n^k
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - n! = n^k
n! = n^k < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

n! = n^k: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:55 Fr 04.11.2005
Autor: oplok

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

hallo,
ich soll folgende aufgabe lösen:

"Bestimmen Sie alle natürlichen Zahlen n [mm] \ge [/mm] 1, k [mm] \ge [/mm] 1, die die Gleichung n! = [mm] n^k [/mm] erfüllen. Begründen Sie Ihre Antwort."

Ich habe keinen Plan wie ich die lösen soll. Habe mir überlegt, dass n! immer positiv ist, aber [mm] n^k [/mm] ist das nicht... für n=1 und k=1 gilt die Gleichung. Aber sonst???

Gruß
oplok

        
Bezug
n! = n^k: Querverweis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:01 Fr 04.11.2005
Autor: Loddar

Guten Morgen oplok!


Diese Frage wurde hier vor kurzem bereits gestellt und auch mit einem Lösungshinweis versehen:

https://matheraum.de/read?t=103565&v=f


Gruß
Loddar


Bezug
        
Bezug
n! = n^k: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:14 Fr 04.11.2005
Autor: klausbo

Die Frage wurde zwar schon gestellt, aber Primzahlen haben wir in der vorlesung noch nicht behandelt. Das soll wohl mit Induktion bewiesen werden. Gruß an alle Essener LeidensgenossenInnen :-)

Bezug
                
Bezug
n! = n^k: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 Fr 04.11.2005
Autor: oplok

klausbo, hast du ne idee wie das gehen soll???
oder sonst jemand???

gruß
oplok

Bezug
                        
Bezug
n! = n^k: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Fr 04.11.2005
Autor: banachella

Hallo oplok!

Auch wenn ihr Primzahlen in der Vorlesung noch nicht hattet, würde ich sagen, dass ihr die Primfaktorisierung benutzen dürft. Immerhin hat man das ja schon in der Schule gemacht, man kann eigentlich ruhig benutzen, was man weiß. Etwas anderes wäre es eigentlich nur dann, wenn ausdrücklich darauf hingewiesen wurde, dass ihr die Aufgabe mit Induktion lösen sollt.

Gruß, banachella

Bezug
                                
Bezug
n! = n^k: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:26 Sa 05.11.2005
Autor: oplok

sorry, aber ich hab leider immernoch keine idee wie ich an die sache herangehen soll.
wie genau muss ich die primfaktorzerlegung machen???

gruß
oplok

Bezug
                                        
Bezug
n! = n^k: nochmal Querverweis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:00 Sa 05.11.2005
Autor: Loddar

Hallo oplok!


Unter dem o.g. Link wurden in den letzten beiden Tagen noch weitere Antworten gepostet.

Sieh Dir diese doch mal an ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]