www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Numeriknewton verfahren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Numerik" - newton verfahren
newton verfahren < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

newton verfahren: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:26 Fr 26.02.2010
Autor: dorix

Aufgabe
[mm] \ f(x)= \wurzel{1+x_1^2+x_2^2} + (1-x_1-x_2)^2 \ [/mm] mit [mm] x=(x_1,x_2)^T [/mm]

ausgehend von [mm] x^{0}=(0,0)^T [/mm] führe man einen Schritt des newton-verfahrens durch.

hallo ihr lieben,

ich komme bei der aufgabe einfach nicht weiter und weder skript noch i-net haben mir weiter geholfen.
ich wollte gern nach der formel [mm] x^(k+1) := x^k - [/mm] [mm]\bruch{F(x^k)}{F′(x^k)} [/mm] aus skript F und F′ bestimmen.
Bekomme dann aber für f(0,0)= 2 raus, also keinen vektor mehr. Kann ich stattdessen schreiben: [mm] f(x)=\begin{pmatrix} \wurzel{1+x_1^2+x_2^2}\ \\(1-x_1-x_2)^2 \end{pmatrix} [/mm]

Partielle Ableitungen wären: [mm] f'(x) = \begin{pmatrix} \bruch{x_1}{\wurzel{1+x_1^2+x_2^2}} & -2((1-x_1-x_2) \\ \bruch{x_2}{\wurzel{1+x_1^2+x_2^2}} & -2(1-x_1-x_2) \end{pmatrix} [/mm]

dann ist [mm] f(0,0)=\begin{pmatrix} 1 \\ 1\end{pmatrix} [/mm] und [mm] f'(0,0)= \begin{pmatrix}0 & -2 \\0 & -2 \end{pmatrix} [/mm]

macht aber irgendwie auch keinen sinn, oder?
Aber wie sonst?


        
Bezug
newton verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Fr 26.02.2010
Autor: uliweil

Hallo Dorix,

ich bin ähnlich ratlos wie Du. Das Newtonverfahren kenne ich nur für Funktionen vom [mm] \IR^{n} [/mm] -> [mm] \IR^{n}, [/mm] hier geht f aber vom [mm] \IR^{2} [/mm] in den [mm] \IR, [/mm] was auch der Grund deiner formalen Schwierigkeiten ist. Auch hat die Funktion f keine Nullstelle, sie ist, wie man leicht sieht, immer positiv.
Gruß
Uli

Bezug
                
Bezug
newton verfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:27 Mo 01.03.2010
Autor: dorix

ok, da kann man nix machen.

lieben dank trotzdem,



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]