www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle Differentialgleichungennicht-lin. SG
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Partielle Differentialgleichungen" - nicht-lin. SG
nicht-lin. SG < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nicht-lin. SG: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:59 Mo 01.07.2013
Autor: Approximus

Aufgabe
nicht-lineare Schrödingergleichung:
[mm] i\partial_{t}u(t,x)=-\Delta u(t,x)+\mu|u(t,x)|^{\alpha}-1u(t,x) [/mm]
mit [mm] x\in\IR^{d}, t\in\IR, \mu=-1 [/mm] oder 1 und [mm] \alpha>1 [/mm]
Sei [mm] k\in\IR^{d}\setminus\{0\} [/mm] ein vorgegebener Vektor und [mm] a\in\IC [/mm] const.

zeige: ebene Welle mit [mm] w_{k}(0,x)=ae^{ikx} [/mm] ist Lsg. der nl-SG.

Hallo, ich komme hierbei leider nicht weiter...meine bisherigen Rechnungen:

[mm] \partial_{t}w_{k}(0,x)=0 [/mm]

[mm] \Delta w_{k}(0,x)=a(ik)^{2}e^{ikx}=-ak^{2}e^{ikx} [/mm]

[mm] \mu|u(t,x)|^{\alpha-1}=\mu|ae^{ikx}|^{\alpha-1}=\mu |a|^{\alpha-1} [/mm]

aber das geht nicht ganz auf, da hat sich irgendwo ein Fehler eingeschlichen.
Wäre für einen Tipp sehr dankbar!
MfG

PS: diese Frage habe ich keinem anderen Forum gestellt!

        
Bezug
nicht-lin. SG: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Mi 03.07.2013
Autor: MathePower

Hallo Approximus,

> nicht-lineare Schrödingergleichung:
>  [mm]i\partial_{t}u(t,x)=-\Delta u(t,x)+\mu|u(t,x)|^{\alpha}-1u(t,x)[/mm]
>  
> mit [mm]x\in\IR^{d}, t\in\IR, \mu=-1[/mm] oder 1 und [mm]\alpha>1[/mm]
>  Sei [mm]k\in\IR^{d}\setminus\{0\}[/mm] ein vorgegebener Vektor und
> [mm]a\in\IC[/mm] const.
>  
> zeige: ebene Welle mit [mm]w_{k}(0,x)=ae^{ikx}[/mm] ist Lsg. der
> nl-SG.
>  Hallo, ich komme hierbei leider nicht weiter...meine
> bisherigen Rechnungen:
>  
> [mm]\partial_{t}w_{k}(0,x)=0[/mm]
>  
> [mm]\Delta w_{k}(0,x)=a(ik)^{2}e^{ikx}=-ak^{2}e^{ikx}[/mm]
>  
> [mm]\mu|u(t,x)|^{\alpha-1}=\mu|ae^{ikx}|^{\alpha-1}=\mu |a|^{\alpha-1}[/mm]
>  


Die Gleichung lautet doch:

[mm]i\partial_{t}u(t,x)=-\Delta u(t,x)+\mu|u(t,x)|^{\alpha\blue{-1}}u(t,x)[/mm]


> aber das geht nicht ganz auf, da hat sich irgendwo ein
> Fehler eingeschlichen.
>  Wäre für einen Tipp sehr dankbar!
>  MfG
>  
> PS: diese Frage habe ich keinem anderen Forum gestellt!


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]