nichtisomorphe fundamentalgrp. < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Hallo, ich bin etwas verwirrt und hoffe, ihr könnt mich dabei aufklären.
Haben definiert die n-Sphäre [mm] S^n:=\{x\in \mathbb{R}^{n+1}:\|x\|=r\}, r\in \mathbb{R}_{>0}. [/mm] Ich dachte bisher, man könnte einfach so schreiben
[mm] S^n=S^1\times...\times S^1 [/mm] (n-mal) bzw dass diese Räume wenigstens homöomorph sind.
Bezeichne als [mm] \pi_1(S^1,x_0) [/mm] mit beliebigem [mm] x_0\in S^1 [/mm] als Fundamentalgruppe von [mm] S^1 [/mm] zum Basispunkt [mm] x_0. [/mm] Jetzt weiss ich, dass diese isomorph zu [mm] \mathbb{Z} [/mm] ist, dementsprechend sind [mm] \pi_1(S^1,x_0)\times ...\times \pi_1(S^1,z_0) [/mm] (n-mal) [mm] \cong \pi_1(S^1\times...\times S^1 ,(x_0,...,z_0))\cong \mathbb{Z}\times...\times \mathbb{Z} [/mm] (n-mal).
Aber ich weiss auch, dass [mm] \pi_1(S^n,y_0)=\{e\} [/mm] für n>1, also
[mm] \pi_1(S^1\times...\times S^1 ,(x_0,...,z_0))\not= \pi_1(S^n,y_0), [/mm] was mich etwas verwirrt.
Jetzt kenne ich ja die Fundamentalgruppen, aber ich dachte erst, dass die gleich sein müssen, habe ja auch immer gedacht, dass [mm] S^n=S^1\times ...\times S^1 [/mm] (n-mal), aber letzte Gleihheit (oder Homöomorphie) scheint ja falsch zu sein oder?also wenn man [mm] S^n, S^1 [/mm] mit der von [mm] \mathbb{R}^{n+1} [/mm] induzierten Topologie versieht und auf [mm] S^1\times...\times S^1 [/mm] die Produkttopologie ...
Oder wie kann man sich das erklären?
Lg
Edit: ok, das stimmt so anscheinend wirklich nicht, anschaulich ist mir das jetzt klar, zb für n=2 hat man [mm] S^2 [/mm] die Kugel und [mm] S^1\times S^1 [/mm] den Torus, der 1 Loch hat und die Sphäre hat kein Loch. Aber wie sieht man dies ohne Anschauung?
Wie könnte man formal begründen, dass es kein Homöomorphismus geben kann ohne dass man Fundamentalgruppen kennt?
Lg
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:36 Mo 01.07.2013 | Autor: | hippias |
Ob man die Nichtisomorphie auch anders nachweisen kann, weiss ich nicht, aber Du schilderst hier jedenfalls eine ganz und gar uebliche Vorgehensweise fuer das fehlen einer Isomorphie: Definiere eine Invariante - hier die Fundamentalgruppe - und zeige, dass diese fuer zwei Strukturen unterschiedlich ist: dann kann Isomorphie nicht vorliegen.
Ein bisschen Anschauung ist fuer einen guten Beweisansatz sicher nicht verkehrt.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:20 Do 04.07.2013 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|