www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und Geometrienichtisomorphe fundamentalgrp.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Topologie und Geometrie" - nichtisomorphe fundamentalgrp.
nichtisomorphe fundamentalgrp. < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nichtisomorphe fundamentalgrp.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:26 So 30.06.2013
Autor: Schachtel5

Hallo, ich bin etwas verwirrt und hoffe, ihr könnt mich dabei aufklären.
Haben definiert die n-Sphäre [mm] S^n:=\{x\in \mathbb{R}^{n+1}:\|x\|=r\}, r\in \mathbb{R}_{>0}. [/mm] Ich dachte bisher, man könnte einfach so schreiben
[mm] S^n=S^1\times...\times S^1 [/mm] (n-mal) bzw dass diese Räume wenigstens homöomorph sind.
Bezeichne als [mm] \pi_1(S^1,x_0) [/mm] mit beliebigem [mm] x_0\in S^1 [/mm] als Fundamentalgruppe von [mm] S^1 [/mm] zum Basispunkt [mm] x_0. [/mm] Jetzt weiss ich, dass diese isomorph zu [mm] \mathbb{Z} [/mm] ist, dementsprechend sind [mm] \pi_1(S^1,x_0)\times ...\times \pi_1(S^1,z_0) [/mm] (n-mal) [mm] \cong \pi_1(S^1\times...\times S^1 ,(x_0,...,z_0))\cong \mathbb{Z}\times...\times \mathbb{Z} [/mm] (n-mal).
Aber ich weiss auch, dass [mm] \pi_1(S^n,y_0)=\{e\} [/mm] für n>1, also
[mm] \pi_1(S^1\times...\times S^1 ,(x_0,...,z_0))\not= \pi_1(S^n,y_0), [/mm] was mich etwas verwirrt.
Jetzt kenne ich ja die Fundamentalgruppen, aber ich dachte erst, dass die gleich sein müssen, habe ja auch immer gedacht, dass [mm] S^n=S^1\times ...\times S^1 [/mm] (n-mal), aber letzte Gleihheit (oder Homöomorphie) scheint ja falsch zu sein oder?also wenn man [mm] S^n, S^1 [/mm] mit der von [mm] \mathbb{R}^{n+1} [/mm] induzierten Topologie versieht und auf [mm] S^1\times...\times S^1 [/mm] die Produkttopologie ...
Oder wie kann man sich das erklären?
Lg



Edit: ok, das stimmt so anscheinend wirklich nicht, anschaulich ist mir das jetzt klar, zb für n=2 hat man [mm] S^2 [/mm] die Kugel und [mm] S^1\times S^1 [/mm] den Torus, der 1 Loch hat und die Sphäre hat kein Loch. Aber wie sieht man dies ohne Anschauung?
Wie könnte man formal begründen, dass es kein Homöomorphismus geben kann ohne dass man Fundamentalgruppen kennt?
Lg

        
Bezug
nichtisomorphe fundamentalgrp.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:36 Mo 01.07.2013
Autor: hippias

Ob man die Nichtisomorphie auch anders nachweisen kann, weiss ich nicht, aber Du schilderst hier jedenfalls eine ganz und gar uebliche Vorgehensweise fuer das fehlen einer Isomorphie: Definiere eine Invariante - hier die Fundamentalgruppe - und zeige, dass diese fuer zwei Strukturen unterschiedlich ist: dann kann Isomorphie nicht vorliegen.
Ein bisschen Anschauung ist fuer einen guten Beweisansatz sicher nicht verkehrt.

Bezug
        
Bezug
nichtisomorphe fundamentalgrp.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Do 04.07.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]