www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebranichtkommutative gruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - nichtkommutative gruppe
nichtkommutative gruppe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nichtkommutative gruppe: brauche den anfang bitte!
Status: (Frage) überfällig Status 
Datum: 04:03 Do 02.11.2006
Autor: toggit

Aufgabe
für [mm] a,b,c,d\in \IR [/mm] definiert man die abbildung
[mm] f_{a,b,c,d}:\IR \times \IR \to \IR \times \IR,(x,y)\mapsto(ax+by,cx+dy) [/mm]
sei dann G={ [mm] f_{a,b,c,d}| a,b,c,d\in \IR, ad-bc\not=0 [/mm] }

a)
prüfen sie nach, dass [mm] (G;\circ) [/mm] eine nicht-kommutative gruppe ist, wobei [mm] f_{1,0,0,1} [/mm] neutrales element ist, und jedes [mm] f_{a,b,c,d}\inG [/mm] die inverse
[mm] {f^{-1}}_{a,b,c,d}=f_{a',b',c',d'} [/mm] hat, mit
[mm] a'=\bruch{d}{ad-bc}, b'=\bruch{-b}{ad-bc}, c'=\bruch{-c}{ad-bc}, d'=\bruch{a}{ad-bc}. [/mm]

b)
berechnen sie [mm] f_{2,1,1,1}\circ f_{1,0,1,1},{f^-1}_{2,1,1,1} [/mm] und [mm] f_{2,1,1,1}\circ f_{1,0,1,1}\circ {f^-1}_{2,1,1,1} [/mm]

c)
definiert man
[mm] H_{1}={f_{a,b,c,d}\in G|a,b,c,d \in \IR, und: ad-bc=1} [/mm]
und
[mm] H_{2}={f_{a,b,c,d}\in G|a,b,c,d \in \IZ, und: ad-bc=1}. [/mm]
zeigen sie, dass [mm] H_{1}\subseteq [/mm] G eine untergruppe von G ist, und dass [mm] H_{2}\subseteq H_{1} [/mm] eine untergruppe von [mm] H_{1} [/mm] ist.

erstmal hallo
und nun zu diese aufgabe,
weiß nicht welche Verknüpfung hier gemeint ist!!!

und zu a) teil muss ich denn nur assoziativgesetz beweisen und auf kommutativität prüfen oder lege ich da falsch?

zur b) wenn ich die verknüpfung nicht kenne weiss ich denn auch nicht wie ich dass berechnen soll

zur c)
reicht hier dass ad-bc=1 untergruppe von [mm] ad-bc\not=0 [/mm] ist  und [mm] \IZ [/mm] in [mm] \IR [/mm] enthalten ist?

bitte um schnelle hilfe, muss das schon morgen abgeben
danke mfg tom

        
Bezug
nichtkommutative gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 08:22 Do 02.11.2006
Autor: mathiash

Hallo und guten Morgen,

> für [mm]a,b,c,d\in \IR[/mm] definiert man die abbildung
>  [mm]f_{a,b,c,d}:\IR \times \IR \to \IR \times \IR,(x,y)\mapsto(ax+by,cx+dy)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
> sei dann G={ [mm]f_{a,b,c,d}| a,b,c,d\in \IR, ad-bc\not=0[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

>  
> a)
> prüfen sie nach, dass [mm](G;\circ)[/mm] eine nicht-kommutative
> gruppe ist, wobei [mm]f_{1,0,0,1}[/mm] neutrales element ist, und
> jedes [mm]f_{a,b,c,d}\inG[/mm] die inverse
> [mm]{f^{-1}}_{a,b,c,d}=f_{a',b',c',d'}[/mm] hat, mit
>  [mm]a'=\bruch{d}{ad-bc}, b'=\bruch{-b}{ad-bc}, c'=\bruch{-c}{ad-bc}, d'=\bruch{a}{ad-bc}.[/mm]
>  

Die Verknüpfung ist die Hintereinanderschaltung (Komposition) von Funktionen:

[mm] f\circ [/mm] g  (x)=f(g(x))

Zu zeigen ist nur, dass diese Menge abgeschlossen unter Komposition und Inversenbildung ist und dass sie
die Identität enthält, da allgemein schon die Menge aller bij. Abb. einer Menge X in sich eine Gruppe mit der Komposition als Gruppenoperation ist.

Zur Nichtkommutativität musst Du halt zwei Funktionen f,g aus G angeben, so dass [mm] f\circ [/mm] g [mm] \neq g\circ [/mm] f gilt.

Hilft das für den Anfang schon mal weiter ?

Gruss,

Mathias

> b)
>  berechnen sie [mm]f_{2,1,1,1}\circ f_{1,0,1,1},{f^-1}_{2,1,1,1}[/mm]
> und [mm]f_{2,1,1,1}\circ f_{1,0,1,1}\circ {f^-1}_{2,1,1,1}[/mm]
>  
> c)
>  definiert man
>  [mm]H_{1}={f_{a,b,c,d}\in G|a,b,c,d \in \IR, und: ad-bc=1}[/mm]
>  
> und
> [mm]H_{2}={f_{a,b,c,d}\in G|a,b,c,d \in \IZ, und: ad-bc=1}.[/mm]
>  
> zeigen sie, dass [mm]H_{1}\subseteq[/mm] G eine untergruppe von G
> ist, und dass [mm]H_{2}\subseteq H_{1}[/mm] eine untergruppe von
> [mm]H_{1}[/mm] ist.
>  erstmal hallo
>  und nun zu diese aufgabe,
> weiß nicht welche Verknüpfung hier gemeint ist!!!
>  
> und zu a) teil muss ich denn nur assoziativgesetz beweisen
> und auf kommutativität prüfen oder lege ich da falsch?
>  
> zur b) wenn ich die verknüpfung nicht kenne weiss ich denn
> auch nicht wie ich dass berechnen soll
>  
> zur c)
>  reicht hier dass ad-bc=1 untergruppe von [mm]ad-bc\not=0[/mm] ist  
> und [mm]\IZ[/mm] in [mm]\IR[/mm] enthalten ist?
>  
> bitte um schnelle hilfe, muss das schon morgen abgeben
>  danke mfg tom

Bezug
        
Bezug
nichtkommutative gruppe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:05 Sa 04.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]