www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körpernilpotent
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - nilpotent
nilpotent < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nilpotent: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:16 So 10.01.2010
Autor: Al87

Aufgabe
Man zeige, dass für ein nilpotentes element r das element r+1 invertierbar ist.

Hi,
weiß jemand wie man da rangehen muss an diese aufgabe? ich weiss, bis jetzt nur die definition eines nilpotenten elementes: ein element a [mm] \in [/mm] P eines kommutativen rings mit eins heißt nilpotent falls ein n [mm] \in [/mm] N existiert, so dass [mm] r^{n} [/mm] = 0 gilt.

mfg al87

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
nilpotent: Antwort
Status: (Antwort) fertig Status 
Datum: 17:27 So 10.01.2010
Autor: felixf

Hallo!

> Man zeige, dass für ein nilpotentes element r das element
> r+1 invertierbar ist.
>
>  Hi,
> weiß jemand wie man da rangehen muss an diese aufgabe? ich
> weiss, bis jetzt nur die definition eines nilpotenten
> elementes: ein element a [mm]\in[/mm] P eines kommutativen rings mit
> eins heißt nilpotent falls ein n [mm]\in[/mm] N existiert, so dass
> [mm]r^{n}[/mm] = 0 gilt.

Es ist $(r + 1) (-r + 1) = 1 - [mm] r^2$, [/mm] $(r + 1) [mm] (r^2 [/mm] - r + 1) = [mm] r^3 [/mm] + 1$, $(r + 1) [mm] (-r^3 [/mm] + [mm] r^2 [/mm] - r + 1) = [mm] -r^4 [/mm] + 1$, etc.

Bekommst du eine Idee?

LG Felix


Bezug
                
Bezug
nilpotent: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:44 So 10.01.2010
Autor: Al87

danke schon erstmal, aber leider bekomme ich ehrlichgesagt nocht nicht so ganz auf eine Idee. es hat sicherlich etwas mit geraden/ungeraden n´s element N zu tun oder?

Bezug
                        
Bezug
nilpotent: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 So 10.01.2010
Autor: felixf

Hallo!

> danke schon erstmal, aber leider bekomme ich ehrlichgesagt
> nocht nicht so ganz auf eine Idee. es hat sicherlich etwas
> mit geraden/ungeraden n´s element N zu tun oder?  

Nein. Aber ein Tipp noch: geometrische Reihe. Was ist in [mm] $\IR$ [/mm] etwa $(1 + [mm] r)^{-1}$? [/mm] Es ist doch $1 + r = 1 - (-r)$.

LG Felix


Bezug
                                
Bezug
nilpotent: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:53 Di 12.01.2010
Autor: Al87

Hey felix,

erstmal dankeschön für die beiden tipps. aber ich hab eine weile darüber nachgedacht und bin ehrlich gesagt immer noch nicht drauf gekommen :( auch meine studienkollegen kamen nicht wirklich damit klar.

lg


Bezug
                        
Bezug
nilpotent: Antwort
Status: (Antwort) fertig Status 
Datum: 08:19 Mi 13.01.2010
Autor: fred97

Felix meint folgendes:

Ist n [mm] \in \IN [/mm] und [mm] $r^n=0$, [/mm] so setze $s:= [mm] \summe_{i=0}^{n-1}(-r)^i$ [/mm]

Dann ist $rs=sr$.

Berechne mal   $s(1+r)$

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]