www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebranormalvektoren bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - normalvektoren bestimmen
normalvektoren bestimmen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

normalvektoren bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 So 08.10.2006
Autor: babo

Aufgabe
geg.:  e1: [mm] \vec{x}= \vektor{1 \\ -1 \\ 2} +\lambda\vektor{1 \\ 0 \\ -2} +\mu\vektor{0 \\ 1 \\ 2} [/mm]
          e1: [mm] \vec{x}= \vektor{-2 \\ a \\ 0} +\lambda\vektor{1 \\ -2 \\ b} +\mu\vektor{c \\ 2 \\ 8} [/mm]

Bestimmen Sie die reellen Zahlen a,b,c so  das  e1 und e2 die gleiche Ebene darstellen.


Hallo,

ich steh im Moment voll auf den Schlauch ..

mein Lösungsanssatz war die Normalvektoren der beiden Ebenen zu finden und c und b so bestimmen das die Normalvektoren [mm] \vec{ne1} [/mm] und [mm] \vec{ne2} [/mm] l.a. werden.

[mm] \vec{ne1}= \mu\vektor{2 \\ -2 \\ 1}; \vec{ne2}= \mu\vektor{-16-2b \\ bc-8 \\ 2+ 2c} [/mm]

Meine ergebnisse sind dann c= -3/2  und   b= -20/3

Damit lässt sich aber das Lsys der normalvektoren nicht lösen.
Würde mcih freuen wenn mir jemand hilft. Danke im Voraus!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
normalvektoren bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:07 So 08.10.2006
Autor: M.Rex


> geg.:  e1: [mm]\vec{x}= \vektor{1 \\ -1 \\ 2} +\lambda\vektor{1 \\ 0 \\ -2} +\mu\vektor{0 \\ 1 \\ 2}[/mm]
>  
>           e1: [mm]\vec{x}= \vektor{-2 \\ a \\ 0} +\lambda\vektor{1 \\ -2 \\ b} +\mu\vektor{c \\ 2 \\ 8}[/mm]
>  
> Bestimmen Sie die reellen Zahlen a,b,c so  das  e1 und e2
> die gleiche Ebene darstellen.
>  
>
> Hallo,
>
> ich steh im Moment voll auf den Schlauch ..
>  
> mein Lösungsanssatz war die Normalvektoren der beiden
> Ebenen zu finden und c und b so bestimmen das die
> Normalvektoren [mm]\vec{ne1}[/mm] und [mm]\vec{ne2}[/mm] l.a. werden.
>  
> [mm]\vec{ne1}= \mu\vektor{2 \\ -2 \\ 1}; \vec{ne2}= \mu\vektor{-16-2b \\ bc-8 \\ 2+ 2c}[/mm]
>  
> Meine ergebnisse sind dann c= -3/2  und   b= -20/3
>  
> Damit lässt sich aber das Lsys der normalvektoren nicht
> lösen.
>  Würde mcih freuen wenn mir jemand hilft. Danke im Voraus!
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hallo

Mach es dir doch einfacher und berechnen den Normalenvektor mit dem Kreuzprodukt der Richtungsvektoren
[Dateianhang nicht öffentlich]
Dass heisst bei dir:
[mm] \vec{n_{1}}=\vektor{1\\0\\-2}\times\vektor{0\\1\\2} [/mm]
und [mm] \vec{n_{2}}=\vektor{1\\-2\\b}\times \vektor{c\\2\\8}. [/mm]

SORRY, ich dachte, das wäre schon das Problem.

Nun zur eigentlichen Frage:

Jetzt kannst du die Parameterform der ersten Ebene in die Normalenform der zweiten einsetzen, und bekommst dann eine Gleichung mit a, b und c.

Dasselbe tust du mit [mm] E_{1}, [/mm] dann erhältst du einezweite Gleichung.

Die dritte Gleichung bekommst du,indem du dafür sorgst, dass die Normierten Normalenvektoren parallel werden, d.h.

[mm] \bruch{\vektor{-2\\2\\1}}{|\vektor{-2\\2\\1}|}=\bruch{\vektor{16-2b\\bc-8\\2+2c}}{|\vektor{16-2b\\bc-8\\2+2c}|} [/mm]

Hilft das weiter?

Marius



Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]