www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-Sonstigesnullstellenproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis-Sonstiges" - nullstellenproblem
nullstellenproblem < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nullstellenproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 Di 02.01.2007
Autor: thary

uhu..
nun eine wahrscheinlich total leichte frage. wie berechne ich die nullstellen von

[mm] y=t^3-t^2-t+1 [/mm]

also klar y=0 setzen..und dann??
danke!

        
Bezug
nullstellenproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 Di 02.01.2007
Autor: Dea

Hallo!

Also zuerst, wie von dir gesagt, mal y=0 setzen:

[mm] t^{3}-t^{2}-t+1=0 [/mm]

Nun macht man weiter mit Polynomdivison:
Das funktioniert so, dass wir zunächst eine Lösung "raten" müssen, was aber in den meisten Fällen gar nicht so kompliziert ist - man probiert erst mal leichte ganze Zahlen wie [mm] \pm1, \pm2, \pm3, [/mm] ...

also für t=+1: [mm] 1^3-1^2-1+1=0 [/mm] funktioniert das schon mal idealerweise und wir haben somit die erste Nullstelle gefunden.
Jetzt musst du dein Anfangspolynom also durch (t-1) dividieren (mit Polynomdivision).
Weißt du, wie das funktioniert? Wenn ja, kannst du das Ergebnis der Polynomdivision wieder =0 setzen und die verbleibenden Nullstellen mit der Lösungsformel bestimmen, wenn nein, frag doch einfach noch mal nach ;-)

Liebe Grüße
Dea

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]