www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweiseobere Grenze des Summenzeichen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Induktionsbeweise" - obere Grenze des Summenzeichen
obere Grenze des Summenzeichen < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

obere Grenze des Summenzeichen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:06 Mo 08.11.2010
Autor: Benja91

Ich habe diese Frage in keinem anderen Forum gestellt:

Hallo,

ich habe den Induktionsbeweis an sich zwar verstanden, bei einer Aufgabe habe ich so allerdings meine Probleme. Um die Induktionsvoraussetzung einsetzen zu können muss ich
[mm] \summe_{i=1}^{2n+1} (-1)^{k-1}*k^{2} [/mm] zu [mm] \summe_{i=1}^{2n-1} (-1)^{k-1}*k^{2} [/mm] umwandeln. Wir haben in der Schule dann einmal 2n und 2n-1 rausgezogen. Allerdings habe ich nicht wirklich verstanden, warum ich dann genau die gewünschte Summe erhalte. Vielleicht kann es mir von euch jemand besser erklären :)

Vielen Dank und lg
Benja

        
Bezug
obere Grenze des Summenzeichen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 Mo 08.11.2010
Autor: schachuzipus

Hallo Benja91,

> Ich habe diese Frage in keinem anderen Forum gestellt:
>
> Hallo,
>
> ich habe den Induktionsbeweis an sich zwar verstanden, bei
> einer Aufgabe habe ich so allerdings meine Probleme. Um die
> Induktionsvoraussetzung einsetzen zu können muss ich
> [mm]\summe_{i=1}^{2n+1} (-1)^{k-1}*k^{2}[/mm] zu [mm]\summe_{i=1}^{2n-1} (-1)^{k-1}*k^{2}[/mm]

Achtung, der Summationsindex muss [mm]\red{k}[/mm] lauten, nicht i !

> umwandeln. Wir haben in der Schule dann einmal 2n und 2n-1
> rausgezogen.

Naja, ihr habt die beiden Summanden für [mm]\red{k=2n}[/mm] und [mm]\blue{k=2n+1}[/mm] herausgezogen, also [mm](-1)^{\red{2n}-1}\cdot{}\red{(2n)^2}[/mm] und [mm](-1)^{\blue{2n+1}-1}\cdot{}\blue{(2n+1)^2}[/mm]

Dass du 2 Summanden rausziehen musst, ist klar?

Du hast in der IV für bel., aber festes [mm]n\in\IN[/mm] die Aussage [mm]\sum\limits_{k=1}^{2n-1}(-1)^{k-1}k^2=\ldots[/mm] (das hast du uns vorenthalten)

Dann ist zu zeigen, dass unter dieser Voraussetzung die Beh. auch für [mm]\green{n+1}[/mm] gilt, dass also [mm]\sum\limits_{k=1}^{2\green{(n+1)}-1}(-1)^{k-1}k^2=\sum\limits_{k=1}^{2n+1}(-1)^{k-1}k^2=\ldots[/mm] gilt.

Diese Summe hat im Vergleich zu der Summe in der IV 2 Summanden mehr, den für [mm]k=2n[/mm] und den für [mm]k=2n+1[/mm] (siehe weiter oben)


> Allerdings habe ich nicht wirklich verstanden,
> warum ich dann genau die gewünschte Summe erhalte.

Was genau meinst du?

Du solltest mal die zu zeigende Beh. formulieren!

Du ziehst die Summe auseinander, um auf die verbliebende Summe von [mm]k=2n[/mm] bis [mm]k=2n-1[/mm] die Induktionsvoraussetzung anwenden zu können.

Du ersetzt diese Summe also durch den Ausdruck ... in der IV.

Dazu addierst du die beiden Summanden für [mm]k=2n[/mm] und [mm]k=2n+1[/mm] (siehe oben) und modelst alles zusammen, bis du die gewünschte rechte Seite ... dastehen hast (die du uns vorenthalten hast) ...

> Vielleicht kann es mir von euch jemand besser erklären :)
>
> Vielen Dank und lg
> Benja

Gruß

schachuzipus


Bezug
                
Bezug
obere Grenze des Summenzeichen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Mi 01.12.2010
Autor: Benja91

Hallo,

es tut mir Leid, dass ich mich erst so spät melde. Ich glaube ich habe mein Problem nicht genau beschrieben. Die Induktion ist mir klar. Ich verstehe aber nicht, warum ich zwei Summanden herausziehen muss.

Zitat:
Naja, ihr habt die beiden Summanden für [mm]\red{k=2n}[/mm] und [mm]\blue{k=2n+1}[/mm] herausgezogen, also [mm](-1)^{\red{2n}-1}\cdot{}\red{(2n)^2}[/mm] und [mm](-1)^{\blue{2n+1}-1}\cdot{}\blue{(2n+1)^2}[/mm]
Zitat Ende

Es wäre schön, wenn ihr mir helfen könntet.

Liebe Grüße
Benja



Bezug
                        
Bezug
obere Grenze des Summenzeichen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Mi 01.12.2010
Autor: abakus


> Hallo,
>  
> es tut mir Leid, dass ich mich erst so spät melde. Ich
> glaube ich habe mein Problem nicht genau beschrieben. Die
> Induktion ist mir klar. Ich verstehe aber nicht, warum ich
> zwei Summanden herausziehen muss.

Und woher sollen wir das wissen? Du hast uns ja nun wirklich nur diese beiden Summen genannt. Der Zusammenhang mit der uns unbekannten Aufgabenstellung (die Bemerkung "ein Induktionsbeweis" ist ja wohl etwas dürftig) fehlt.
Aber ich glaube, ich kann dir trotzdem antworten:
Man hat es sicher gemacht, weil das für die Bewältigung der Aufgabe vorteilhaft war. Sicher hat man gerade die Summe gebraucht, in der die beiden letzten Summanden nicht mit drin stehen.
Gruß Abakus

>  
> Zitat:
>  Naja, ihr habt die beiden Summanden für [mm]\red{k=2n}[/mm] und
> [mm]\blue{k=2n+1}[/mm] herausgezogen, also
> [mm](-1)^{\red{2n}-1}\cdot{}\red{(2n)^2}[/mm] und
> [mm](-1)^{\blue{2n+1}-1}\cdot{}\blue{(2n+1)^2}[/mm]
> Zitat Ende
>  
> Es wäre schön, wenn ihr mir helfen könntet.
>  
> Liebe Grüße
>  Benja
>  
>  


Bezug
                                
Bezug
obere Grenze des Summenzeichen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:47 Fr 03.12.2010
Autor: Benja91

Hallo,

danke für deine Antwort. Es geht mir gar nicht um den Induktionsbeweis. Ich verstehe grundsätzlich nicht wie ich von einer Summe mit [mm] \summe_{i=1}^{2n+1} [/mm] zu einer Summe mit [mm] \summe_{i=1}^{2n-1} [/mm] komme. Ich muss ja irgendetwas aus der Summe ziehen, aber ich habe nicht verstanden was und wie das genau funktioniert.
Entschuldigung für meine vorher zu ungenaue Fragestellung.

Liebe Grüße
Benja

Bezug
                                        
Bezug
obere Grenze des Summenzeichen: einzeln aufschreiben
Status: (Antwort) fertig Status 
Datum: 11:51 Fr 03.12.2010
Autor: Loddar

Hallo Benja!


Zur Veranschaulichung, schreibe Dir den Term [mm]2n-1_[/mm] und alle darauffolgenden Terme auf bis Du [mm]2n+1_[/mm] erhältst:

[mm]2n-1 \ \rightarrow \ 2n \ \rightarrow \ 2n+1[/mm]

Damit sollte nun klar sein, dass Du hier die beiden Summenterme für [mm]2n_[/mm] bzw. [mm]2n+1_[/mm] seperat betrachten musst.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]