www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra Sonstigesobere Schranke
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - obere Schranke
obere Schranke < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

obere Schranke: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:33 Sa 09.10.2010
Autor: Ersty

Ich habe diese Frage in keinem anderen Forum gestellt!


Hi,
ich frage mich gerade, was der genaue Unterschied zwischen oberer Schranke und 1 maximalen ELement ist.

Hier die Def:
Sei [mm] \le [/mm] eine Ordnungsrelation auf A.

[mm] a\in [/mm] A ist max. Element, wenn kein b [mm] \in [/mm] A existiert : b > a.

Sei zusätzlich zur Ordnungsrelation [mm] B\subseteq [/mm] A. Dann ist a [mm] \in [/mm] A eine obere Schranke der Teilmenge B, wenn [mm] \forall [/mm] b [mm] \in [/mm] B gilt: a [mm] \ge. [/mm]

Ist a dann nicht maximales bzw. größtes Element der Teilmenge B?
Oder ist das nicht richtig, weil bei einer oberen Schranke, das a nicht in B liegen muss?

Wieso heißt es eigentlich obere Schranke? Weil es die Elemente b nach oben hin beschränkt?

Könnt ihr mir vlt ein anschauliches Beispiel geben, damit ich mit dem Begriff der oberen Schranke mehr anfangen kann.

Ich danke euch jetzt schon mal und wünsche euch ein schönes WE!

MFG Ersty

        
Bezug
obere Schranke: Beispiele
Status: (Antwort) fertig Status 
Datum: 14:13 Sa 09.10.2010
Autor: Al-Chwarizmi

Hallo Ersty,


> Hi,
>  ich frage mich gerade, was der genaue Unterschied zwischen
> einer oberen Schranke und einem maximalen ELement ist.
>  
> Hier die Def:
>  Sei [mm]\le[/mm] eine Ordnungsrelation auf A.
>  
> [mm] a\in [/mm] A ist max. Element, wenn kein b [mm] \in [/mm] A existiert mit b > a.
>  
> Sei zusätzlich zur Ordnungsrelation [mm]B\subseteq[/mm] A. Dann ist
> a [mm] \in [/mm] A eine obere Schranke der Teilmenge B, wenn [mm]\forall[/mm] b
> [mm] \in [/mm] B gilt: a [mm]\ge b[/mm]
>  
> Ist a dann nicht maximales bzw. größtes Element der
> Teilmenge B?

Um maximales Element von B zu sein, müsste [mm] a\in [/mm] B
sein, was aber hier nicht vorausgesetzt wurde.

>  Oder ist das nicht richtig, weil bei einer oberen
> Schranke, das a nicht in B liegen muss?

Genau.
  

> Wieso heißt es eigentlich obere Schranke? Weil es die
> Elemente b nach oben hin beschränkt?

Ja.
  

> Könnt ihr mir vlt ein anschauliches Beispiel geben, damit
> ich mit dem Begriff der oberen Schranke mehr anfangen
> kann.

Nehmen wir die Menge [mm] \IR [/mm]  (mit der üblichen [mm] \le [/mm] - Relation)
und ihre beiden Teilmengen

          $\ M\ =\ [mm] \{\,x\in\IR\ |\ x\,\le 5\,\}$ [/mm]

          $\ N\ =\ [mm] \{\,x\in\IR\ |\ x^2<4\,\}$ [/mm]

M besitzt ein größtes Element (nämlich die 5), aber kein
kleinstes Element.
M hat unendlich viele obere Schranken in [mm] \IR: [/mm] jede Zahl [mm] s\in\IR [/mm]
mit [mm] s\ge [/mm] 5  eignet sich dazu.
M hat aber keine untere Schranke.

N besitzt weder ein kleinstes noch ein größtes Element,
aber jeweils unendlich viele obere und untere Schranken.
Die kleinstmögliche obere Schranke von N ist die
Zahl 2, die aber nicht in N liegt und deshalb eben auch
nicht als größtes Element von N in Frage kommt.

> Ich danke euch jetzt schon mal und wünsche euch ein
> schönes WE!

Das wünsche ich dir ebenfalls !

Gruß     Al-Chw.


Bezug
                
Bezug
obere Schranke: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:21 Sa 09.10.2010
Autor: Ersty

Super Beispiele, ich habs verstanden!

Vielen herzlichen Dank!

MFG Ersty

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]