www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenoffene Menge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - offene Menge
offene Menge < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

offene Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:09 So 16.08.2009
Autor: schlumpfinchen123

Aufgabe
Zeigen Sie, dass die Menge $M:= [mm] \left\{ \vektor{x \\ y} \in \IR^2 | xy \neq 0\right\}$ [/mm] offen in [mm] $(\IR^2, d_2)$ [/mm] ist.

Hallo,

kann mir vielleicht jemand bei dieser Aufgabe weiterhelfen?
Ich weiß nicht, wie ich anfangen soll. Ich kenne zwar die Definition für eine offene Menge:

"Eine Menge M ist offen, wenn für alle [mm] a\in [/mm] M gilt M ist Umgebung von a."

Kann damit allerdings in bezug auf diese Aufgabe nicht so viel anfangen.
Vielleicht kann mir jemand einen Tipp geben?!

Viele Grüße,
das schlumpfinchen

        
Bezug
offene Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 So 16.08.2009
Autor: Marcel

Hallo Schlumpfinchen,

> Zeigen Sie, dass die Menge [mm]M:= \left\{ \vektor{x \\ y} \in \IR^2 | xy \neq 0\right\}[/mm]
> offen in [mm](\IR^2, d_2)[/mm] ist.
>  Hallo,
>  
> kann mir vielleicht jemand bei dieser Aufgabe
> weiterhelfen?
>  Ich weiß nicht, wie ich anfangen soll. Ich kenne zwar die
> Definition für eine offene Menge:
>  
> "Eine Menge M ist offen, wenn für alle [mm]a\in[/mm] M gilt M ist
> Umgebung von a."

könnt ihr auch benutzen:
Eine Menge $M [mm] \subset X\,$ [/mm] ist offen, wenn für alle $a [mm] \in [/mm] M$ ein [mm] $\epsilon=\epsilon(a) [/mm] > 0$ existiert, so dass [mm] $U_\epsilon(a):=\{x \in X: d(x,a) < \epsilon\} \subset [/mm] M$?

Deine obige Menge [mm] $M\,$ [/mm] ist gerade der euklidische [mm] $\IR^2,\,$ [/mm] ohne die [mm] $x\,$- [/mm] und auch ohne die [mm] $y\,$-Achse [/mm] ($xy [mm] \not=0$ $\gdw$ [/mm] $x [mm] \not=0$ [/mm] und $y [mm] \not=0$). [/mm]

Ein Punkt [mm] $a=(x_a,y_a) \in [/mm] M [mm] \subset \IR^2$ [/mm] erfüllt also [mm] $x_a \not=0$ [/mm] und [mm] $y_a \not=0\,.$ [/mm] Setze [mm] $\epsilon=\epsilon(a):=\min\{|x_a|,\;|y_a|\}$ [/mm] und zeige, dass [mm] $U_\epsilon(a) \subset [/mm] M$ gilt.

Selbst, wenn Dir diese Charakterisierung (in metrischen Räumen) nicht geläufig ist:
Du hättest zu zeigen, dass für jedes $a [mm] \in [/mm] M$ dann [mm] $M\,$ [/mm] eine Umgebung von [mm] $a\,$ [/mm] ist. Das heißt, es wäre zu zeigen:
Für jedes $a [mm] \in [/mm] M$ existiert eine offene Teilmenge $O=O(a) [mm] \subset M,\,$ [/mm] so dass $a [mm] \in [/mm] O$. Wie Du für $a [mm] \in [/mm] M$ eine solche offene Menge [mm] $O\,$ [/mm] findest, sollte Dir dann auch klar sein [mm] ($O=O(a)=U_\epsilon(a)$ [/mm] von oben tut's; es sollte ggf. noch kurz begründet werden, warum dann [mm] $U_\epsilon(a)$ [/mm] selbst auch offen ist).

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]