orthog. Proj. auf affinen Raum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:07 Sa 11.02.2006 | Autor: | mushroom |
Aufgabe | Es bezeichne [mm]<\cdot,\cdot>[/mm] das Skalarprodukt
[mm] = ^tv\pmat{2&1&0\\1&2&1\\0&1&2}w[/mm]
auf [mm]\IR^3[/mm]. Berechnen Sie für den affinen Raum
[mm] U = \vektor{1\\0\\0}+\IR\vektor{1\\0\\1}+\IR\vektor{0\\1\\1} [/mm]
und den Vektor [mm]v = ^t(2,1,3)[/mm] die orthogonale Projektion von [mm]v[/mm] auf [mm]U[/mm], d.h. berechnen Sie den Vektor [mm]u\in U[/mm] mit [mm]||v-u|| = \min_{u' \in U} ||v-u'||[/mm].
|
Hallo,
habe zu dieser Aufgabe bisher folgendes:
[mm]u' = \vektor{1\\0\\0} +r\vektor{1\\0\\1} +s\vektor{0\\1\\1}[/mm] und [mm]v-u' = \vektor{1-r\\1-s\\3-r-s}[/mm]
[mm]||v-u'||^2 = \pmat{1-r & 1-s & 3-r-s}\pmat{2&1&0\\1&2&1\\0&1&2}\vektor{1-r\\1-s\\3-r-s} = 4r^2+6s^2-20r-26s+8rs+30[/mm].
Aus einer anderen Aufgabenstellung weiß ich, daß [mm]u = P(v) \iff ||v-u|| = \min_{u'\in U} ||v-u'||[/mm] (was ich noch zeigen soll) ist. Nun weiß ich leider nicht wie ich damit weiterarbeiten kann.
Bin für jeden Hinweis dankbar.
Gruß
Markus
|
|
|
|
Quadratisch ergänzen:
[mm]4r^2 + 6s^2 - 20r - 26s + 8rs + 30 = (4r^2 + 8rs + 4s^2) - 10 \cdot (2r + 2s) + 2(s^2 - 3s) + 30[/mm]
[mm]= (2r + 2s)^2 - 10 \cdot (2r + 2s) + 2 \left( s - \frac{3}{2} \right)^2 + \frac{51}{2}[/mm]
[mm]= \left( (2r + 2s) - 5 \right)^2 - 25 + 2 \left( s - \frac{3}{2} \right)^2 + \frac{51}{2}[/mm]
[mm]= (2r +2s - 5)^2 + 2 \left( s - \frac{3}{2} \right)^2 + \frac{1}{2}[/mm]
Ein ganz anderer Weg beschreitet geometrische Pfade.
Das Vorgehen lautet: In neuen Koordinaten denken. Man kann sich nämlich mit dem Verfahren nach Gram-Schmidt eine Orthonormalbasis bezüglich [mm]\langle \cdot , \cdot \rangle[/mm] beschaffen, z.B.
[mm]e_1 = \sqrt{\frac{1}{2}} \, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \, , \ \ \ e_2 = \sqrt{\frac{1}{2}} \, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \, , \ \ \ e_3 = \frac{1}{2} \, \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}[/mm]
Ich habe das Verfahren mit den Vektoren [mm]\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \, , \ \ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \, , \ \ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}[/mm] in Anlehnung an die Vektoren, die [mm]U[/mm] bilden, gestartet.
Wenn man die Richtungsvektoren von [mm]U[/mm] nun mittels dieser Basis ausdrückt, findet man:
[mm]\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \ = \ \sqrt{2} \, e_1 + \sqrt{2} \, e_2 \, , \ \ \ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \ = \ \sqrt{\frac{1}{2}} \, e_1 + 3 \sqrt{\frac{1}{2}} \, e_2 - e_3[/mm]
Das äußere Produkt dieser Vektoren, natürlich in der neuen Basis gedacht (d.h. [mm]e_1 \times e_2 = e_3 \, , \ e_2 \times e_3 = e_1 \, , \ e_3 \times e_1 = e_2[/mm] und ansonsten die üblichen Rechenregeln: Antikommutativität, Distributivität usw.), liefert einen Normalenvektor von [mm]U[/mm]. Da man hierbei die Freiheit hat, einen Vektor mit einem Skalar [mm]\neq 0[/mm] zu multiplizieren, kann man das so anstellen:
[mm]\left( e_1 + e_2 \right) \times \left( e_1 + 3 \, e_2 - \sqrt{2} \, e_3 \right) \ = \ - \sqrt{2} \, e_1 + \sqrt{2} \, e_2 + 2 e_3 \ = \ \sqrt{2} \, \left( -e_1 + e_2 + \sqrt{2} \, e_3 \right)[/mm]
So bekommt man die Normalform von [mm]U[/mm]:
[mm]\langle \ -e_1 + e_2 + \sqrt{2} \, e_3 \ , \ x - \sqrt{2} \, e_1 \ \rangle \ = \ 0[/mm]
Die Bilinearität ausnutzend kann man das wegen [mm]\langle e_i , e_j \rangle = \delta_{ij}[/mm] (Kronecker-[mm]\delta[/mm]) auch so schreiben:
[mm]\langle -e_1 + e_2 + \sqrt{2} \, e_3 \ , \ x \rangle \ = \ -\sqrt{2}[/mm]
Jetzt fehlt noch der Vektor [mm]v[/mm] in neuen Koordinaten:
[mm]v = 5 \sqrt{\frac{1}{2}} \, e_1 + 7 \sqrt{\frac{1}{2}} \, e_2 - e_3[/mm]
Das Lot von [mm]v[/mm] auf [mm]U[/mm] ist gegeben durch
[mm]x = v + \lambda \left( -e_1 + e_2 + \sqrt{2} \, e_3 \right) \, , \ \ \lambda \in \mathbb{R}[/mm]
Jetzt [mm]x[/mm] in die Normalform von [mm]U[/mm] einsetzen, [mm]\lambda[/mm] berechnen und mit dem berechneten Wert den gesuchten Lotfußpunkt [mm]u[/mm] bestimmen.
Der hier beschrittene Weg vollzieht einfach die elementare geometrische Vorstellung nach: Um den kürzesten Abstand eines Punktes von einer Ebene zu bestimmen, fälle man von diesem aus das Lot auf sie. Der Witz hier ist nur, daß man nicht mit den ursprünglichen Koordinaten rechnen darf, da die diesbezüglichen Einheitsvektoren keine Orthonormalbasis von [mm]\langle \cdot , \cdot \rangle[/mm] bilden. Daher die ganzen Umrechnungen auf [mm]e_1,e_2,e_3[/mm]. Ansonsten aber geht das wie in der Schule: Eine Ebene wird mit der Lotgeraden geschnitten.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 10:33 So 12.02.2006 | Autor: | mushroom |
Hallo Leopold!
Erstmal vielen Dank für deine ausführliche Antwort, den zweiten Lösungsweg werde ich mir nacher mal näher anschauen.
Zu der quadratischen Ergänzung verstehe ich jetzt allerdings nicht den Zusammenhang zum [mm] \min [/mm] .
Gruß
Markus
|
|
|
|
|
Für welches [mm](a,b) \in \mathbb{R}^2[/mm] wird [mm]12 a^2 + 2 b^2 + 2006[/mm] minimal? Und wie groß ist das Minimum?
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:27 So 12.02.2006 | Autor: | mushroom |
Hallo nochmal!
Weiß leider nicht wie man so eine Gleichung minimiert. Könnte mir nur vorstellen, daß es wie beim differenzieren von "normalen" Gleichungen ist, aber hier liegt ja eine dreidimensionale Funktion vor (oder?) und wie ich die differenzieren soll, weiß ich nicht bzw. hatten wir in der Vorlesung sowas noch nicht behandelt.
|
|
|
|
|
Es steht vor deinen Augen - und du siehst es nicht.
Quadrate werden niemals negativ. Das ist's!
Deshalb der ganze Aufwand - nur um Quadrate zu erzeugen!
Quadrate - Q u a d r a t e - Q U A D R A T E
[mm]12 a^2 + 2 b^2 + 2006[/mm]
hat mindestens den Wert [mm]2006[/mm]. Und dieses Minimum wird angenommen, wenn [mm]a=b=0[/mm] gilt. Mehr braucht's zur Begründung nicht.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:47 So 12.02.2006 | Autor: | mushroom |
Irgendwie habe ich mir das schon gedacht.
Also angewendet auf meine Aufgabe setzte ich dann
[mm]2r+2s-5 = 0[/mm] und [mm]s-\frac{3}{2}= 0[/mm], dies ist genau dann erfüllt, wenn [mm]s= \frac{3}{2}[/mm] und [mm]r=1[/mm].
Mein gesuchter Vektor [mm]u[/mm] ergibt sich dann mit [mm]\vektor{1\\0\\0} + 1\vektor{1\\0\\1}+\frac{3}{2}\vektor{0\\1\\1}= \vektor{2\\\frac{3}{2}\\ \frac{5}{2}}[/mm].
Ist das dann korrekt (hoffnungsvoll fragend)?
|
|
|
|