orthogonales komplement < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 15:39 Do 24.05.2007 | Autor: | bratwurst |
Aufgabe | Sei a [mm] \in \IR [/mm] und V = C([-a,a]) der [mm] \IR-Vektorraum [/mm] aller stetigen Funktionen f: [-a,a] [mm] \to \IR [/mm] mit dem Skalarprodukt <f,g> := [mm] \integral_{-a}^{a}{f(x)g(x) dx}
[/mm]
und sei U:= {f [mm] \in [/mm] C([-a,a]) | f(-x)= -f(x) [mm] \forall [/mm] x [mm] \in [/mm] [-a,a]} der Untervektorraum aller ungeraden Funktionen. Bestimmen Sie das orthogonale Komplement von U. |
Hallo, ich sitze grad an dieser Aufgabe und komme mal wieder nicht weiter.
Ich weiß zwar, was das orthogonale Komplement ist aber ich hab hier keine Idee, wie ich das bestimmen kann.
Es wäre sehr schön, wenn mir jemand weiterhelfen könnte.
mfg
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo bratwurst, ich werd mal meinen Senf dazugeben... ;)
Schau dir mal das Integral an und besonders die Grenzen - das schreit doch geradzu danach, dass man es in 2 Teile zerlegt, also [-a,0[ und [0,a], und dann versucht, die Tatsache zu nutzen, dass f ungerade ist.
|
|
|
|
|
Danke für deine Antwort. Leider komme ich immernoch nicht drauf.
Ich muss doch Funktionen finden, deren Skalarprodukt mit jeder Funktion aus U 0 ergibt. Richtig? Und woher weiß ich, wieviele es gibt und wie finde ich die?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:20 Do 24.05.2007 | Autor: | felixf |
Hallo bratwurst!
> Danke für deine Antwort. Leider komme ich immernoch nicht
> drauf.
> Ich muss doch Funktionen finden, deren Skalarprodukt mit
> jeder Funktion aus U 0 ergibt. Richtig? Und woher weiß ich,
> wieviele es gibt und wie finde ich die?
Hast du den Hinweis von generation...x mal befolgt? Also fuer eine ungerade Funktion $f$ das Skalarprodukt [mm] $\langle [/mm] f, g [mm] \rangle$ [/mm] umgeschrieben?
Es ist ja [mm] $\langle [/mm] f, g [mm] \rangle [/mm] = [mm] \int_{-a}^a [/mm] f(x) g(x) dx = [mm] \int_{-a}^0 [/mm] f(x) g(x) dx + [mm] \int_0^a [/mm] f(x) g(x) dx = [mm] \int_0^a [/mm] f(-x) g(-x) dx + [mm] \int_0^a [/mm] f(x) g(x) dx = [mm] -\int_0^a [/mm] f(x) g(-x) dx + [mm] \int_0^a [/mm] f(x) g(x) dx = [mm] \int_0^a [/mm] f(x) (g(x) - g(-x)) dx$.
Das ist insbesondere dann $0$, wenn $g(x) = g(-x)$ ist fuer alle $x [mm] \in [/mm] [0, a]$. Versuch doch mal zu zeigen, dass [mm] $\{ g \in V \mid g(x) = g(-x) \text{ f"ur } x \in [0, a] \}$ [/mm] ist.
(Hinweis: jede stetige Funktion laesst sich eindeutig als Summe von einer geraden und einer ungeraden Funktion darstellen.)
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:33 Do 24.05.2007 | Autor: | bratwurst |
Danke, das hat mir sehr geholfen. Jetzt komm ich wohl alleine drauf.
mfg
|
|
|
|