oszillierende Funktionen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo,
ich habe eine Frage zur Oszillation von Funktionen. Und zwar geht es mir im wesentlichen um die Frage der Stetigkeit und Unstetigkeit von solchen Funktionen. Ich habe mir in der Vorlesung notiert, dass z.B. die Funktion
f(x)= [mm] \begin{cases} x^2*sin(\bruch{1}{x}), & \mbox{für } x \not=0 \\ 0, & \mbox{für } x=0 \end{cases}
[/mm]
stetig ist, da der Grenzwert für x [mm] \to [/mm] 0 existiert, dieser ist nämlich 0. Das bedeutet die Funktion ist stetig und im Nullpunkt differenzierbar. Nun ist aber die Ableitung der Funktion f(x)
f'(x) = [mm] \begin{cases} 2*x*sin(\bruch{1}{x})-cos(\bruch{1}{x}), & \mbox{für } x \not=0 \\ 0, & \mbox{für } x=0 \end{cases}
[/mm]
unstetig. Da hier eben kein Grenzwert existiert, da [mm] -cos(\bruch{1}{x}) [/mm] oszilliert.
Bedeutet das denn, dass ozillierende Funktionen nie stetig sein können? Aber die Funktion [mm] x^2*sin(\bruch{1}{x}) [/mm] oszilliert doch auch und diese ist ja stetig, wie oben beschrieben.
Kann mir das bitte jemand mal erklären?!?
Danke!
LG
|
|
|
|
Hallo,
was verstehst du unter Oszillation?
Wenn du das meinst, was in der Wikipedia steht, und was meiner Kenntnis nach die übliche Wortbedeutung ist, dann hat das doch mit der Stetigkeit überhaupt nichts zu tun.
Sowohl die Funktion f als auch ihre Ableitung oszillieren um den Ursprung herum beliebig schnell. Also je näher man dem x-Wert 0 kommt, desto höher wird die Frequenz. Da im Fall der Funktion f das ganze durch den Faktor [mm] x^2 [/mm] jedoch abgedämpft wird (der Faktor bewirkt, dass die Funktion zwischen den Schranken [mm] x^2 [/mm] und [mm] -x^2 [/mm] oszilliert), ist f dann an der Stelle x=0 stetig (wobei das natürlich keine Begründung ist, sondern nur eine Veranschaulichung).
Klar ist jedoch, dass ein Term der Form [mm] sin\left(\bruch{1}{x}\right) [/mm] bzw. [mm] cos\left(\bruch{1}{x}\right) [/mm] an der Stelle x=0 keinen eindeutigen Wert besitzen kann und daher ist eben die Ableitung f' nicht stetig.
Gruß, Diophant
|
|
|
|