www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheoriep-adische Zahl, Faktorring
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - p-adische Zahl, Faktorring
p-adische Zahl, Faktorring < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

p-adische Zahl, Faktorring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:11 Mi 27.09.2006
Autor: Denny22

Hallo und Guten Morgen an alle,

Folgende Frage lässt mich nicht ruhig schlafen :-)

R kommutativer Ring mit 1 (R enthält alle Cauchy-Folgen aus [mm] $\IQ$), [/mm] I maximales Ideal von R (I enthält alle Nullfolgen aus R).
Dann wurde die p-adischen Zahlen (p Primzahl) durch den Faktorring definiert, also:

[mm] $\IQ_{p}:=R/I$ [/mm]

Dies ist ein Körper und im Text steht, dass man sich unter einem Element der Menge folgendes vorstellen kann:

[mm] $x=\{x_n\}\mod [/mm] I$

Nun habe ich zwei Fragen:

1.Könnte mir jemand erklären, wie ein solches x aussehen kann? Und mir vielleicht ein Beispiel nennen, denn das mir dem mod I verwirrt mich, weil I Folgen enthält.

2.Was spielt in dieser Definition das p überhaupt für eine Rolle? Eigentlich doch keine, denn R und I hängen nicht von p ab. Vielmehr weist das p doch lediglich auf den p-adischen Betrag,... der zu verwenden ist, oder?

Ich danke Euch schon einmal,

Denny

(Diese Frage wurde in noch keinem anderen Forum und auf keiner anderen Internetseite gestellt)

        
Bezug
p-adische Zahl, Faktorring: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 Mi 27.09.2006
Autor: felixf

Hallo Denny!

> R kommutativer Ring mit 1 (R enthält alle Cauchy-Folgen aus
> [mm]\IQ[/mm]), I maximales Ideal von R (I enthält alle Nullfolgen
> aus R).

Hier ist es wichtig, dass du bei der Definition von $R$ die verwendete Bewertung erwaehnst. Um von Cauchy-Folgen zu sprechen, benoetigt man immer eine Bewertung, du meinst hier wohl die $p$-adische Bewertung? (Was deine Frage weiter unten dann wohl beantwortet :) )

Wenn du eine andere Bewertung waehlst, kommt i.A. auch ein anderer Ring $R$ raus. Und das Ideal $I$ aendert sich auch.

> Dann wurde die p-adischen Zahlen (p Primzahl) durch den
> Faktorring definiert, also:
>  
> [mm]\IQ_{p}:=R/I[/mm]
>  
> Dies ist ein Körper und im Text steht, dass man sich unter
> einem Element der Menge folgendes vorstellen kann:
>  
> [mm]x=\{x_n\}\mod I[/mm]
>  
> Nun habe ich zwei Fragen:
>  
> 1.Könnte mir jemand erklären, wie ein solches x aussehen
> kann? Und mir vielleicht ein Beispiel nennen, denn das mir
> dem mod I verwirrt mich, weil I Folgen enthält.

Du kannst dir $x$ als `Grenzwert' der Folge [mm] $(x_n)_n$ [/mm] vorstellen. Zwei solche Cauchy-Folgen haben genau dann den gleichen Grenzwert, wenn sie sich um eine Nullfolge unterscheiden -- weshalb die Elemente aus $R/I$ genau den Grenzwerten aller Cauchy-Folgen mit Koeffizienten in [mm] $\IQ$ [/mm] bzgl. der $p$-adischen Bewertung entsprechen!

Das mod I bedeutet hier, dass es dir egal ist, welche Cauchy-Folge den Genzwert gerade repraesentiert. Wenn du eine andere CF mit gleichem Grenzwert hast, tut sie das genauso, weil deren Differenz gerade eine Nullfolge ist.

> 2.Was spielt in dieser Definition das p überhaupt für eine
> Rolle? Eigentlich doch keine, denn R und I hängen nicht von
> p ab. Vielmehr weist das p doch lediglich auf den
> p-adischen Betrag,... der zu verwenden ist, oder?

Wie oben schon gesagt: Ohne den Betrag kannst du $R$ und $I$ nicht definieren. Insofern steckt das $p$ ganz zentral in [mm] $\IQ_p$ [/mm] drinnen :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]